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Abstract. We propose a denotational semantic framework for deter-
ministic dataflow and stream processing that encompasses a variety of
existing streaming models. Our proposal is based on the idea that data
streams, stream transformations, and stream-processing programs should
be classified using types. The type of a data stream is captured for-
mally by a monoid, an algebraic structure with a distinguished binary
operation and a unit. The elements of a monoid model the finite frag-
ments of a stream, the binary operation represents the concatenation of
stream fragments, and the unit is the empty fragment. Stream trans-
formations are modeled using monotone functions on streams, which we
call stream transductions. These functions can be implemented using
abstract machines with a potentially infinite state space, which we call
stream transducers. This abstract typed framework of stream transduc-
tions and transducers can be used to (1) verify the correctness of stream-
ing computations, that is, that an implementation adheres to the desired
behavior, (2) prove the soundness of optimizing transformations, e.g. for
parallelization and distribution, and (3) inform the design of program-
ming models and query languages for stream processing. In particular,
we show that several useful combinators can be supported by the full
class of stream transductions and transducers: serial composition, paral-
lel composition, and feedback composition.

Keywords: Data streams · Denotational semantics · Type system

1 Introduction

Stream processing is the computational paradigm where the input is not pre-
sented in its entirety at the beginning of the computation, but instead it is
given in an incremental fashion as a potentially unbounded sequence of elements
or data items. This paradigm is appropriate in settings where data is created
continually in real-time and has to be processed immediately in order to ex-
tract actionable insights and enable timely decision-making. Examples of such
datasets are streams of business events in an enterprise setting [26], streams
of packets that flow through computer networks [37], time-series data that is
captured by sensors in healthcare applications [33], etc.

Due to the great variety of streaming applications, there are various propos-
als for specialized languages, compilers, and runtime systems that deal with the



2 Konstantinos Mamouras

processing of streaming data. Relational database systems and SQL-based lan-
guages have been adapted to the streaming setting [1,2,15,16,18,19,32,37,57,91].
Recently, several systems have been developed for the distributed processing of
data streams that are based on the distributed dataflow model of computa-
tion [6, 7, 70, 86, 92, 94, 108, 112, 113]. Languages for detecting complex events
in distributed systems, which draw on the theory of regular expressions and
finite-state automata, have also been proposed [29,40,41,50,53,88,99,111]. The
synchronous dataflow formalisms [20, 24, 28, 51, 73, 107] are based on Kahn’s
seminal work [59], and they have been used for exposing and exploiting task-
level and pipeline parallelism within streaming computations in the context
of embedded systems. Several formalisms for the runtime verification of re-
active systems have been proposed, many of which are based on variants of
Temporal Logic and its timed/quantitative extensions [39, 43, 52, 74, 105]. Fi-
nally, there is a large collection of languages and systems for reactive program-
ming [34,36,38,46,47,55,68,69,77,89,93,103], which focus on the development of
event-driven and interactive applications such as GUIs and web programming.

The aforementioned languages and systems have been successfully used in the
application domains for which they were developed. However, each one of them
typically introduces a unique variant of the streaming model in terms of: (1) the
form of the input and output data, (2) the class of expressible stream-processing
computations, and (3) the syntax employed to describe these computations.
This has resulted in an enormous proliferation of semantic models for stream
processing that are difficult to compare. For this reason, we are interested in
identifying a semantic unification of several existing streaming models.

This paper introduces a typed semantic framework for reasoning about
languages and systems for stream processing. Three key questions are tackled:

1. How do we model streams and what is the form of the data that they carry?
2. How do we capture mathematically the notion of a stream transformation?
3. What is a general programming model for specifying streaming computations?

The first two questions concern the discovery of an appropriate denotational
model for streaming computation. The third question concerns the design of
programming and query languages, where a key requirement is that the behav-
ior of a streaming program/query admits a precise mathematical description.
Existing works have addressed these questions in the context of specific classes
of applications. Here are examples of various perspectives:

− Transductions of strings [8, 100, 104, 110]: A stream is viewed as an
unbounded sequence of letters, and a stream transformation is a translation
from input sequences to output sequences, which is typically called string/word
transduction. These translations are commonly described using finite-state trans-
ducers, a class of automata that extend acceptors with output.

− The streaming dataflow model of Gilles Kahn [59, 60]: The input
and output consist of multiple independent channels that carry unbounded se-
quences of elements. A transformation is a function from a tuple of input se-
quences to a tuple of output sequences. Such transformations are specified with
dataflow graphs whose nodes describe single-process computations.
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− Relational transformations [71]: A stream is an unbounded multiset
(bag) of tuples, and a stream transformation is a monotone operator (w.r.t. mul-
tiset containment) on multisets. This can be generalized to consider more than
one input stream. An interesting subclass of these operators can be described
syntactically using monotone relational algebra.

− Processing of time-varying relations [16, 17]: A stream is a time-
varying finite multiset of tuples, i.e. an unbounded sequence of finite multisets of
tuples. In this setting, a stream transformation processes the input in a way that
preserves the notion of time: after processing t input multisets (i.e., t time units)
the output consists of t output multisets. The query language CQL [16] defines
a class of such computations that involve relational and windowing operators.

− Transformations of continuous-time signals [27]: An input stream
is a continuous-time signal, that is, a function from the real numbers R to an n-
dimensional space Rn. A stream transformation is a mapping from input signals
to output signals that is causal, which means that the value of the output at time
t depends on the values of input signal up to (and including) time t. Systems of
differential equations can be used to describe classes of such transformations.

We are interested here in a unifying framework that encompasses all the
aforementioned concrete instances of streaming models and enables formal rea-
soning about the composition of streaming computations from different models.
In order to achieve this we take an abstract algebraic approach that retains
only the essential aspects of stream processing without any unnecessary special-
ization. The rest of the section outlines our proposal.

At the most fundamental level, stream processing is computation over input
that is not given at the beginning in full, but rather is presented incrementally
as the computation evolves. Since the input is presented piece by piece, the basic
concepts that need to be captured mathematically are: (1) what is a piece or
fragment of the input, and (2) how do we extend the input. The most general
class of algebraic structures that model these notions is the class of monoids,
the collection of algebras that have a distinguished binary associative multi-
plication operation · and an identity element 1 for this operation. A monoid
(A, ·, 1) then constitutes a type of data streams, where the elements of the
monoid are all the possible finite stream fragments, the identity 1 ∈ A is the
empty stream fragment, and the multiplication operation · : A×A→ A models
the concatenation of stream fragments. Using monoids, we can organize several
notions of data streams using types that describe the form of the data, as well
any invariants or assumptions about them. Monoids encompass the kinds of data
streams that we mentioned earlier and many more: strings of letters, linear se-
quences of data items, tuples of sequences, multisets (bags) of data items, sets
of data items, time-varying relations/multisets, (potentially disordered) times-
tamped sequences of data items, continuous-time signals, and so on.

Stream transformations can be classified according to the type of their input
and output streams, which we call a transduction type. They are modeled us-
ing monotone functions that map an input stream history (i.e., the fragment of
the input stream that has been received from the beginning of the computation
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until now) to an output stream history (i.e., the fragment of the output stream
produced so far). The monotonicity requirement captures the idea that a stream
transformation cannot retract the output that has already been emitted. We
call such functions stream transductions, and we propose them as a deno-
tational semantic model for stream processing. This model encompasses string
transductions, non-diverging Kahn-computable [59] functions on streams, mono-
tone relational transformations [71], the CQL-definable [16] transformations on
time-varying relations, and transformations of continuous-time signals [27].

We also introduce an abstract model of computation for stream processing.
The considered programs or abstract machines are called stream transduc-
ers, and they are organized using transducer types that specify the input and
output stream types. A stream transducer processes the input stream in an in-
cremental fashion, by consuming it fragment by fragment. The consumption of
an input fragment results in the emission of an output fragment. Our algebraic
setting brings in an unavoidable complication compared to the classical theory
of word transducers: not all stream transducers describe a stream transduction.
This phenomenon has to do with the generalization of the input and output data
streams from sequences of atomic data items to elements of arbitrary monoids.
A stream transducer has to respect its input/output type, which means that the
way in which the input stream is fragmented into pieces and fed to the trans-
ducer does not affect the cumulative output. More concisely, this says that the
cumulative output is independent from the fragmentation of the input. In order
to formalize this notion, we say that a factorization of an input history u is a
sequence of stream fragments u1, u2, . . . , un whose concatenation is equal to the
input history, i.e. u1 ·u2 · · ·un = u. Now, the desired restriction can be described
as follows: for every input history w and any two factorizations u1, . . . , um and
v1, . . . , vm of w, the cumulative output that the transducer emits when consum-
ing the fragments u1, . . . , um in sequence is equal to the cumulative output when
consuming the fragments v1, . . . , vn. Fortunately, this complex property can be
distilled into an equivalent property on the structure of the stream transducer
that we call coherence property. Every stream transducer that is coherent has
a well-defined semantics or denotation in terms of a stream transduction.

We have already outlined the basics of our general framework for streaming
computation, which includes: (1) a classification of streams using monoids as
types, (2) a denotational semantic model that employs monotone functions from
input histories to output histories, and (3) a programming model that general-
izes transducers to compute meaninfully on elements of arbitrary monoids. This
already allows us to address important questions about specific computations:

− Does a streaming program (transducer) behave as intended? This amounts
to checking whether the denotation of the transducer is the desired function.

− Are two streaming programs (transducers) equivalent? This means that their
denotations in terms of stream transductions are the same.

The first question is a correctness property. The second question is relevant for
semantics-preserving program optimization. We will turn now to the issue of how
to modularly specify complex stream transductions and transducers.
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One of the most common ways to conceptually organize complex streaming
computations is to view the overall computation as the composition of several
processes that run independently and are connected with directed communi-
cation channels on which streams of data flow. This way of structuring com-
putations is called the dataflow programming model. The simple deterministic
parallel model of Karp and Miller [61] is one of the first variants of dataflow,
and other notable early works on dataflow models include Dennis’s parallel lan-
guage of actors and links [42] and Kahn’s networks [59] of computing stations and
communication lines. We investigate three key dataflow combinators for com-
posing stream transductions (i.e., semantic-level) and stream transducers (i.e.,
program-level): serial composition, parallel composition, and feedback com-
position. Serial composition is useful for describing pipelines of processing stages,
where the output of one stage is streamed as input into the next stage. Parallel
composition describes the independent and concurrent computation of two or
more components. Feedback composition supports computations whose current
output depends on previously produced outputs. We show that our framework
supports all these combinators, which facilitate the modular description of com-
plex computations and expose pipeline and task-based parallelism.

Outline of paper. In Sect. 2 we introduce the idea that data streams can be
classified using monoids as their types, and in Sect. 3 we propose the semantic
model of stream transductions. Sect. 4 is devoted to the description of an ab-
stract model of streaming computation, called stream transducer, and the main
properties that it satisfies. In Sect. 5 we show that our abstract model is closed
under a fundamental set of dataflow combinators: serial, parallel, and feedback
composition. In Sect. 6 we prove the soundness of a streaming optimizing trans-
formation using denotational arguments and algebraic rewriting. Sect. 7 contains
related work, and Sect. 8 concludes with a brief summary of our proposal.

2 Monoids as Types for Streams

Data streams are typically viewed as unbounded linear sequences of data items,
where a data item can be thought of as a small indivisible piece of data. This
viewpoint is sufficient for describing many useful semantic and programming
models, but it is too concrete and unnecessarily restricts the notion of a data
stream. In order to see this, consider a computation where the specific order in
which the data items arrive is not relevant. Counting is a trivial example of such
a computation, and it can be described operationally as follows: every time a
new data item arrives, the counting stream algorithm emits the total number of
items that have been seen so far. This can be described mathematically by the
function β, given by β(〈x1, x2, . . . , xn〉) = 〈1, 2, . . . , n〉, where 〈x1, x2, . . . , xn〉
is the input and 〈1, 2, . . . , n〉 is the cumulative output of the computation. For
this computation, the input can be meaningfully viewed as a multiset (or bag)
instead of a sequence, since the ordering of the data items is irrelevant. This
means that multisets can also be viewed as data streams, and in some cases this
viewpoint is preferable to the traditional one of “streams = sequences”.
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The example of the previous paragraph raises an obvious question: What
class of mathematical objects can meaningfully serve as data streams? Linear
sequences and multisets should certainly be included, but it would be desirable
to generalize the notion of streams as much as possible. Recent works explore the
idea of generalizing streams to encompass a large class of partial orders [13,85],
but we will see later that this approach excludes many useful instances. Stream
processing is the computational paradigm where the input is not presented in
full at the beginning of the computation, but instead it is given in an incremental
fashion or piece by piece. For this reason, there are just three notions that need
to be modeled mathematically: (1) a fragment or piece of a data stream, (2)
the extension of data with an additional fragment of data, and (3) the empty
data stream, i.e. the data seen at the very beginning of the computation. This
leads us to consider a kind or type of a data stream as an algebraic structure that
satisfies the following: (1) its elements model data stream fragments, (2) it has a
distinguished associative operation · for the concatenation of stream fragments,
and (3) it has a distinguished element 1 that represents the empty fragment so
that 1 is a unit for concatenation. The class of monoids is the largest class of
algebraic structures that fulfill these requirements.

More formally, a monoid is an algebraic structure (A, ·, 1), where · : A×A→
A is a binary operation called multiplication and 1 ∈ A is a constant called unit,
that satisfies the following two axioms: (I) (x ·y) ·z = x · (y ·z) for all x, y, z ∈ A,
and (II) 1 · x = x · 1 = x for all x ∈ A. The first axiom says that · is associative,
and the second axiom says that 1 is a left and right identity for the · operation.
For brevity, we will sometimes write xy to denote x · y.

Suppose that A is a monoid. We write A∗ for the set of all finite sequences of
elements of A and ε for the empty sequence. The finite multiplication function
π : A∗ → A is given by π(ε) = 1 and π(x̄ · 〈y〉) = π(x̄) · y for x̄ ∈ A∗ and y ∈ A.
For sequences x̄, ȳ ∈ A∗, it holds that π(x̄ · ȳ) = π(x̄) · π(ȳ). So, π generalizes
the binary multiplication · to a finite but arbitrary number of arguments.

Let (A, ·A, 1A) and (B, ·B , 1B) be monoids. Their product is the monoid (A×
B, ·, 1), where the multiplication operation is given by (x, y) · (x′, y′) = (x ·A
x′, y ·B y′) for x, x′ ∈ A and y, y′ ∈ B, and the identity is 1 = (1A, 1B).

A monoid homomorphism from a monoid (A, ·, 1) to a monoid (B, ·, 1)
is a function h : A → B that commutes with the monoid operations, that is,
h(1) = 1 and h(x · y) = h(x) · h(y) for all x, y ∈ A.

As we discussed earlier, we can think of a monoid as a type of data streams.
The elements of the monoid represent finite stream fragments. The multiplication
operation · models the concatenation of stream fragments, and the unit of the
monoid is the empty stream fragment.

For a monoid (A, ·, 1) we define the binary relation 4 as follows: for all
x, y ∈ A, we put x 4 y if and only if xz = y for some z ∈ A. Since the relation
4 is reflexive and transitive, we call it the prefix preorder for the monoid
A. The unit 1 is a minimal element w.r.t. the 4 relation: 1 · x = x and hence
1 4 x for every x ∈ A. Define the function prefix : A × A → P(A) as follows:
prefix(x, y) = {z ∈ A | xz = y} for all x, y ∈ A. This implies that x 4 y iff
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prefix(x, y) 6= ∅. In other words, prefix(x, y) is the set of all witnesses for x 4 y.
A partial function ∂ : A × A ⇀ A is said to be a prefix witness function (or
simply a witness function) for the monoid A if its domain is equal to 4 and it
satisfies: ∂(x, y) ∈ prefix(x, y) for every x, y ∈ A with x 4 y. We can express this
equivalently by requiring that the type of the function ∂ is

∏
(x,y)∈4prefix(x, y).

We say that a monoid A satisfies the left cancellation property if xy = xz
implies y = z for all x, y, z ∈ A. In this case we say that A is left-cancellative. If
A is left-cancellative, then it has a unique prefix witness function, because x 4 y
implies that there is a unique z with xz = y.

Example 1 (Finite Sequences). Consider the algebra (FSeq(A), ·, ε), where
FSeq(A) is the set A∗ of all finite words (strings) over a set A, · is word concate-
nation, and ε is the empty word. This algebra is a monoid. In fact, it is the free
monoid with generators A. For u, v ∈ A∗, u 4 v iff the word u is a prefix of the
word v. There is a unique prefix witness function, because for every x, y ∈ A∗
with x 4 y there is a unique z ∈ A∗ such that xz = y.

Let us consider now a variant of Example 1 in order to clear any misunder-
standings regarding the 4 order. The set A∗, together with the empty sequence
ε, and the operation ◦ given by x◦y = yx is a monoid. For the monoid (A∗, ε, ◦),
we have that x 4 y iff x ◦ z = zx = y for some z ∈ A∗. So, x 4 y iff the word x
is a suffix of the word y.

Example 2 (Finite Multisets). Consider the algebra (FBag(A),∪, ∅), where
FBag(A) is the set of all finite multisets (bags) over a set A, ∪ is multiset
union, and ∅ is the empty multiset. This algebra is a monoid. In fact, it is
the free commutative monoid with generators A. It is also left cancellative. For
x, y ∈ FBag(A), x 4 y iff x is contained in y. So, we also use the notation
⊆ instead of 4. There is a unique prefix witness function, because for every
x, y ∈ FBag(A) with x ⊆ y there is a unique z ∈ FBag(A) such that xz = y.

Example 3 (Finite Sets). Let A be a set. Consider the algebra (FSet(A),∪, ∅),
where FSet(A) is the set of all finite subsets of A, ∪ is set union, and ∅ is the
empty set. This algebra is a monoid. In fact, it is the free commutative idempotent
monoid with generators A. For x, y ∈ FBag(A), x 4 y iff x is contained in y. So,
we also use the notation ⊆ instead of 4.

For x ⊆ y, define ∂(x, y) = y \ x, where \ is the set difference operation.
Since x ∪ (y \ x) = y for x ⊆ y, ∂ is a prefix witness function. We also define
τ(x, y) = y for x ⊆ y. Since x ∪ y = y for x ⊆ y, τ is a prefix witness function.
So, FSet(A) has several distinct prefix witness functions.

Example 4 (Finite Maps). Let K be a set of keys, and V be a set of values.
Consider the algebra (FMap(K,V ), ·, ∅), where FMap(K,V ) is the set of all par-
tial maps K ⇀ V with a finite domain, ∅ is the partial map with empty domain,
and · is defined as follows:

(f · g)(k) =


g(k), if g(k) is defined

f(k), if g(k) is undefined and f(k) is defined

undefined, otherwise
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for every f, g ∈ FMap(K,V ) and k ∈ K. We leave it to the reader to check that
∅ · f = f · ∅ = f and (f · g) · h = f · (g · h) for all f, g, h ∈ FMap(K,V ). So, the
algebra FMap(K,V ) is a monoid.

Let f, g ∈ FMap(A). We write dom(f) = {k ∈ K | f(k) is defined} for the
domain of f . It holds that dom(f · g) = dom(f) ∪ dom(g). Using this property,
we see that f 4 g iff dom(f) ⊆ dom(g).

Let f, g ∈ FMap(K,V ) with f 4 g. Define ∂(f, g) = g. Since dom(f) ⊆
dom(g), we have that f ·∂(f, g) = g. It follows that ∂ is a prefix witness function.
Define g \ f ∈ FMap(K,V ) as follows:

(g \ f)(k) =


g(k), if g(k) is defined and f(k) is undefined

g(k), if g(k), f(k) are defined and g(k) 6= f(k)

undefined, otherwise

for every k ∈ K. From f 4 g we get f ·(g\f) = g. So, \ is a prefix witness function.
This means that FMap(K,V ) has several distinct prefix witness functions.

Example 5 (Bounded-Domain Continuous-Time Signals). Let A be an
arbitrary set, and R be the set of real numbers. A bounded-domain continuous-
time signal with values in A is a function f : [0, u) → A where u ≥ 0 is a real
number and [u, v) = {t ∈ R | u ≤ t < v}. We define the concatenation operation
· for such signals as follows:

f : [0, u)→ A g : [0, v)→ A

f · g : [0, u+ v)→ A
(f · g)(t) =

{
f(t), if t ∈ [0, u)

g(t− u), if t ∈ [u, u+ v)

We write BSig(A) for the set of all these bounded-domain continuous-time sig-
nals. The unit signal is the unique function of type [0, 0)→ A, whose domain of
definition is empty. Observe that BSig(A) is a monoid. For signals f : [0, u)→ A
and g : [0, v) → A, it holds that f 4 g iff u ≤ v and f(t) = g(t) for ev-
ery t ∈ [0, u). There is a unique prefix witness function, because for every
f, g ∈ BSig(A) with f 4 g there is a unique h ∈ BSig(A) such that f · h = g.

Example 6 (Timed Finite Sequences). We write N to denote the set of nat-
ural numbers (non-negative integers). A timed sequence over A is an alternating
sequence s0a1s1a2 . . . ansn, where si ∈ N and ai ∈ A for every i. The occurrences
s0, s1, . . . are called time punctuations and indicate the passage of time. So, the
set of all timed sequences over A is equal to TFSeq(A) = N·(A·N)∗. We define the
fusion product � of timed sequences as follows: s0a1s1 . . . amsm �t0b1t1 . . . bntn =
s0a1s1 . . . am(sm + t0)b1t1 . . . bntn. The unit timed sequence is the singleton se-
quence 0. The algebra (TFSeq(A), �, 0) is easily shown to be a monoid. There
is a unique prefix witness function, because for all x, y ∈ TFSeq(A) with x 4 y
there is a unique z ∈ TFSeq(A) s.t. x � z = y.

Example 7 (Finite Time-Varying Multisets). A finite time-varying mul-
tiset over A is a partial function f : N ⇀ FBag(A) whose domain is equal to
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[0..n] = {0, . . . , n} for some integer n ≥ 0. We also use the notation f : [0..n]→
FBag(A) to convey this information regarding the domain of f . We define the
concatenation operation · for finite time-varying multisets as follows:

f : [0..m]→ FBag(A)

g : [0..n]→ FBag(A)

f · g : [0..m+ n]→ FBag(A)

(f · g)(t) =


f(t), if t ∈ [0..m− 1]

f(t) ∪ g(0), if t = m

g(t−m), if t ∈ [m+ 1..n]

We write TFBag(A) to denote the set of all finite time-varying multisets over A.
The unit time-varying multiset Id : [0..0]→ FBag(A) is given by Id(0) = ∅. It is
easy to see that f · Id = f and that Id · f = f for every f : [0..n] → FBag(A).
We leave it to the reader to also verify that (f · g) · h = f · (g · h) for finite
time-varying multisets f , g and h. So, the set TFBag(A) together with · and Id
is a monoid. It is not difficult to show that it is left-cancellative.

Let us consider now the prefix preorder 4 on finite time-varying multisets.
For f : [0..m] → FBag(A) and g : [0..n] → FBag(A), it holds that f 4 g iff
m ≤ n and f(t) = g(t) for every t ∈ [0..m].

The examples above highlight the variety of mathematical objects that can
be meaningfully viewed as streams. These streams can be organized elegantly
using the structure of monoids. The sequences of Example 1, the multisets of
Example 2, and the finite time-varying multisets of Example 7 can be described
equivalently in terms of the partial orders of [13, 85], which have also been sug-
gested as an approach to unify notions of streams. Using partial orders it is
also possible to model the timed finite sequences of Example 6, but only with a
non-succinct encoding: every time punctuation t ∈ N is encoded with a sequence
11 . . . 1 of t punctuations, one for each time unit. Partial orders cannot encode
the sets of Example 3, the maps of Example 4, or the signals of Example 5. In-
formally, the reason for this is that partial orders can only encode commutation
equations, which are insufficient for objects such as sets and maps.

3 Stream Transductions

In this section we will introduce stream transductions as semantic denotational
models of stream transformations. At any given point in a streaming computa-
tion, we have seen an input history (the part of the stream from the beginning
of the computation until now) and we have produced an output history (the
cumulative output that has been emitted from the beginning until now). As a
first approximation, a streaming computation can be described mathematically
by a function β : A → B, where A and B are monoids that describe the input
and output type respectively, which maps an input history x ∈ A to an output
history β(x) ∈ B. The function β has to be monotone because the output is
cumulative, which means that it can only be extended with more output items
as the computation proceeds. An equivalent way to understand the monotonicity
property is that it captures the idea that any output that has already been emit-
ted cannot be retracted. Since β takes an entire input history as its argument,
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it can describe stateful computations, where the output that is emitted at every
step potentially depends on the entire input history.

Definition 8 (Stream Transduction & Incremental Form). Let A and B
be monoids. A function β : A→ B is said to be monotone (with respect to the
prefix preorder) if x 4 y implies β(x) 4 β(y) for all x, y ∈ A. For a monotone
β : A→ B, we say that the partial function µ is a monotonicity witness function
if it maps elements x, y ∈ A and z ∈ prefix(x, y) witnessing that x 4 y to a
witness µ(x, y, z) ∈ prefix(β(x), β(y)) for β(x) 4 β(y). That is, we require that
the type of µ is

∏
x,y∈Aprefix(x, y)→ prefix(β(x), β(y)). So, the defining property

of µ is that for all x, y, z ∈ A with xz = y it holds that β(x) · µ(x, y, z) = β(y).
For brevity, we will sometimes write µ(x, z) to denote µ(x, xz, z). The defining
property of µ is then written as β(x) · µ(x, z) = β(xz) for all x, z ∈ A.

A stream transduction from A to B is a function β : A→ B that is mono-
tone with respect to the prefix preorder, together with a monotonicity witness
function µ :

∏
x,y∈Aprefix(x, y) → prefix(β(x), β(y)). We write STrans(A,B) to

denote the set of all stream transductions from A to B.
The incremental form of a stream transduction 〈β, µ〉 ∈ STrans(A,B) is a

function F(β, µ) : A∗ → B∗, which is defined inductively by F(β, µ)(ε) = 〈β(1)〉
and F(β, µ)(〈x1, . . . , xn, xn+1〉) = F(β, µ)(〈x1, . . . , xn〉) · 〈µ(x1 · · ·xn, xn+1)〉 for
every sequence 〈x1, . . . , xn+1〉 ∈ A∗.

Consider the stream transduction 〈β, µ〉 : STrans(A,B) and the input frag-
ments x, y ∈ A. Notice that µ(x, y) gives the output increment that the streaming
computation generates when the input history x is extended into xy. For an ar-
bitrary output monoid B, the output increment µ(x, y) is generally not uniquely
determined by β(x) and β(xy). This means that the monotonicity witness func-
tion µ generally provides some additional information about the streaming com-
putation that cannot be obtained purely from β. However, if the output monoid
B is left-cancellative then there is a unique function µ that witnesses the mono-
tonicity of β.

Suppose that 〈β, µ〉 : STrans(A,B) is a stream transduction. The incremental
form F(β, µ) of the transduction 〈β, µ〉 describes the stream transformation in
explicit input/output increments. For example, F(β, µ)(〈x1〉) = 〈β(1), µ(1, x1)〉
and F(β, µ)(〈x1, x2〉) = 〈β(1), µ(1, x1), µ(x1, x2)〉. The key property of the in-
cremental form is that π(F(β, µ)(x̄)) = β(π(x̄)) for every x̄ ∈ A∗. For example,
π(F(β, µ)(〈x1, x2, x3〉)) = β(1)·µ(1, x1)·µ(x1, x2)·µ(x1x2, x3) = β(x1)·µ(x1, x2)·
µ(x1x2, x3) = β(x1x2) · µ(x1x2, x3) = β(x1x2x3).

Example 9 (Counting). Let A be an arbitrary set. We will describe a stream-
ing computation whose input type is the monoid FBag(A) and whose output
type is the monoid FSeq(N). The informal operational description is as follows:
there is no initial output, and every time a new data item arrives the compu-
tation emits the total number of items seen so far. The formal description is
given by the stream transduction β : FBag(A) → FSeq(N), defined by β(∅) = ε
and β(x) = 〈1, 2, . . . , |x|〉 for every non-empty x ∈ FBag(A), where |x| denotes
the size of the multiset x. It is easy to see that β is monotone. Since FSeq(N)
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is left-cancellative, the monotonicity witness function is uniquely determined:
µ(x, ∅) = ε and µ(x, y) = 〈|x|+ 1, . . . , |x|+ |y|〉 when y 6= ∅.

Example 10 (Per-Key Aggregation). Let K be a set of keys, and V be
a set of values. The elements of K × V are typically called key-value pairs.
Suppose that op : V × V → V is an associative and commutative operation. So,
op can be generalized to an aggregation operation that takes non-empty finite
multisets over V as input. We will describe a streaming computation whose
input type is the monoid FBag(K × V ) and whose output type is the monoid
FMap(K,V ). Informally, every time an item (k, v) is processed, the output map
is updated so that the k-indexed entry contains the aggregate (using op) of all
values seen so far for the key k. The formal description of this computation is
given by the stream transduction β : FBag(K × V ) → FMap(K,V ), defined by
β(x) = {k 7→ op(x|k) | k appears in x} for every multiset x, where x|k denotes
the multiset that results from x by keeping only the pairs whose key is equal to
k. That is, the domain of β(x) is equal to dom(β(x)) = {k ∈ K | k appears in x}
and β(x)(k) = op(x|k) for every k that appears in x. The monotonicity witness
function µ is defined as follows: µ(x, y) is equal to the restriction of the map
β(x ∪ y) to the set of all keys that appear in y.

We saw in Sect. 2 that we can form products of monoids: if A and B are
monoids, then so is A × B. Intuitively, we can think of A × B as the data
stream type that involves two parallel and independent channels: one channel
for streams of type A and another channel for streams of type B.

Example 11 (Merging of Multiple Input Channels). Given a set A, we
want to describe a transformation with two input channels of type FBag(A) and
one output channel of type FBag(A). The monotone function β : FBag(A) ×
FBag(A) → FBag(A), given by β(x, y) = x ∪ y for multisets x and y, describes
the merging of the two input substreams. Operationally, whenever a new data
item arrives (regardless of channel) it is propagated to the output channel. Since
FBag(A) is left-cancellative, the monotonicity witness function is uniquely deter-
mined: µ(〈x1, y1〉, 〈x2, y2〉) = (x2 ∪ y2) \ (x1 ∪ y1) for all x1, y1, x2, y2 ∈ FBag(A).

Example 12 (Flatten). Let A be a monoid. The function β : FSeq(A) → A,
given by β(x̄) = π(x̄) for every x̄ ∈ FSeq(A), describes the flattening of a se-
quence of monoid elements. The function β is monotone, and its monotonicity
witness function µ is given by µ(x̄, ȳ) = π(ȳ) for all x̄ and ȳ. The stream trans-
duction flatten(A) = 〈β, µ〉 has type STrans(FSeq(A), A).

Example 13 (Split in Batches). Let Σ = {a, b} be an alphabet of sym-
bols. Suppose that we want to describe the decomposition of an element of
Σ∗ into batches of size exactly 3. We describe this using two functions r1 :
Σ∗ → FSeq(Σ∗) and r2 : Σ∗ → Σ∗. Informally, r1 gives the sequence of full
batches of size 3, and r2 gives the remaining incomplete batch. For example,
r1(abbaabba) = 〈abb, aab〉 and r2(abbaabba) = ba.

This idea of splitting in batches can be generalized from the monoid Σ∗ to
an arbitrary monoid A. We say that a splitter for A is a pair r = (r1, r2) of
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functions r1 : A → FSeq(A) and r2 : A → A satisfying the following prop-
erties: (1) the equality x = π(r1(x)) · r2(x) says that r1 and r2 decompose
x ∈ A, (2) r1(1A) = ε says that the unit cannot be decomposed, (3) r1(x · y) =
r1(x) · r1(r2(x) · y) and (4) r2(x · y) = r2(r2(x) · y) describe how to decom-
pose the concatenation of two monoid elements. The first two properties im-
ply that r2(1A) = 1A. The third property implies that r1 is monotone. Define
µ(x, y) = r1(r2(x)·y) for x, y ∈ A and observe that r1(x)·µ(x, y) = r1(xy). It fol-
lows that split(r) = 〈r1, µ〉 is a stream transduction of type STrans(A,FSeq(A)).

Our denotational model of a stream transformation uses a monotone function
whose domain is the monoid of (finite) input histories. We emphasize that such
a denotation can also describe the transformation of an infinite stream. To il-
lustrate this point in simple terms, consider a monotone function β : A∗ → B∗,
where A (resp., B) is the type of input (resp., output) items. This function ex-
tends uniquely to the ω-continuous function β∞ : A∞ → B∞, where A∞ = A∗∪
Aω is the set of finite and infinite sequences over A, as follows: β∞(a0a1a2 . . .)
is equal to the supremum of the chain β(ε) ≤ β(a0) ≤ β(a0a1) ≤ . . .

4 Model of Computation

We will present an abstract model of computation for stream processing, where
the input and output data streams are elements of monoids A and B respec-
tively. A streaming algorithm is described by a transducer, a kind of automaton
that produces output values. We consider transducers that can have a poten-
tially infinite state space, which we denote by St. The computation starts at a
distinguished initial state init ∈ St, and the initialization triggers some initial
output o ∈ B. The computation then proceeds by consuming the input stream
incrementally, i.e. fragment by fragment. One step of the computation from a
state s ∈ St involves consuming an input fragment x ∈ A, producing an output
increment out(s, x) ∈ B and transitioning to the next state next(s, x) ∈ St.

Definition 14 (Stream Transducer). Let A, B be monoids. A stream trans-
ducer with inputs from A and outputs from B is a tuple G = (St, init, o, next, out),
where St is a nonempty set of states, init ∈ St is the initial state, o ∈ B is the ini-
tial output, next : St×A→ St is the transition function, and out : St×A→ B is
the output function. We write G(A,B) to denote the set of all stream transducers
with inputs from A and outputs from B.

We define the generalized transition function gnext : St × A∗ → St by in-
duction: gnext(s, ε) = s and gnext(s, 〈x〉 · ȳ) = gnext(next(s, x), ȳ) for all s ∈ St,
x ∈ A and ȳ ∈ A∗. A state s ∈ St is said to be reachable in G if there exists a
sequence x̄ ∈ A∗ such that gnext(init, x̄) = s.

We define the generalized output function gout : St × A∗ → B by induc-
tion on the second argument: gout(s, ε) = 1 and gout(s, 〈x〉 · ȳ) = out(s, x) ·
gout(next(s, x), ȳ) for all s ∈ St, x ∈ A and ȳ ∈ A∗. The extended output func-
tion eout : St×A∗ → B∗ is defined similarly: eout(s, ε) = ε and eout(x, 〈x〉 · ȳ) =
〈out(s, x)〉 · eout(next(s, x), ȳ) for all s ∈ St, x ∈ A and ȳ ∈ A∗.
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Example 15 (Transducer for Counting). Recall the counting streaming
computation that was described in Example 9. We will describe a stream trans-
ducer that implements the counting computation. The input monoid is FBag(A)
and the output monoid is FSeq(N). The state space is St = N, because the
transducer has to maintain a counter that remembers the number of data items
seen so far. The initial state is init = 0 and the initial output is o = ε. The
transition function increments the counter, i.e. next(s, x) = s + |x| for every
s ∈ St and x ∈ FBag(A). The output function is defined by out(s, ∅) = ε and
out(s, x) = 〈s + 1, . . . , s + |x|〉 for a nonempty multiset x. The type of this
transducer is G(FBag(A),FSeq(N)).

Example 16 (Transducer for Merging). We will implement the merging
computation of Example 11, where there are two input channels of type FBag(A)
and one output channel of type FBag(A). The transducer does not need mem-
ory, so St = Unit, where Unit = {?} is a singleton set. The initial state is
init = ? and the initial output is o = ∅. There is only one possibility for the
transition function: next(s, 〈x, y〉) = ?. The output function describes the prop-
agation of the input increments of both input channels to the output chan-
nel: out(s, 〈x, y〉) = x ∪ y for all multisets x, y. The type of this transducer is
G(FBag(A)× FBag(A),FBag(A)).

Example 17 (Flatten). For a monoid A, we define a transducer Flatten(A) =
(St, init, o, next, out) : G(FSeq(A), A) that implements the flattening transduc-
tion of Example 12. This computation does not require memory, so we define
St = Unit and init = ?. The initial output is o = 1A, the transition function
is uniquely determined by next(s, x) = ?, and the output function is given by
out(s, 〈a1, . . . , an〉) = a1 · · · an.

Example 18 (Split in Batches). For a monoid A and a splitter r = (r1, r2) for
A (Example 13), we describe a transducer Split(r) = (St, init, o, next, out) that
implements the transduction split(r) : STrans(A,FSeq(A)). We define St = A,
because the transducer needs to remember the remainder of the cumulative
input that does not yet form a complete batch, and init = 1A. The initial output
o = ε is the empty sequence. The transition and output functions are defined by
next(s, x) = r2(s · x) and out(s, x) = r1(s · x).

Definition 14 does not capture a key requirement for streaming computations
over monoids, namely that the cumulative output of a transducer G should be
independent of the particular way in which the input history is split into the
fragments that are fed to it. More precisely, suppose that w is an input history
that can be fragmented (factorized) in two different ways: w = u1 · u2 · · ·um
and w = v1 · v2 · · · vn. Then, the cumulative output of the transducer G when
consuming the sequence of fragments (factorization) u1, u2, . . . , um should be
equal to the cumulative output when consuming v1, v2, . . . , vn. In Definition 20
below, we formulate a set of coherence conditions that a transducer must adhere
to in order to satisfy this “factorization independence” requirement.



14 Konstantinos Mamouras

Definition 19 (Bisimulation & Bisimilarity). Let G = (St, init, o, next, out)
be a transducer with inputs from A and outputs from B. A relation R ⊆ St×St
is a bisimulation for G if for every s, t ∈ St and x ∈ A we have that (s, t) ∈ R
implies out(s, x) = out(t, x) and (next(s, x), next(t, x)) ∈ R. We will also use the
notation sRt to mean (s, t) ∈ R. We say that the states s, t ∈ R are bisimilar,
denoted s ∼ t, if there exists a bisimulation R for G such that sRt. The relation
∼ is called the bisimilarity relation for G.

It is well-known that the bisimilarity relation for G is an equivalence relation
(reflexive, symmetric, and transitive), and for all s, t ∈ St and x ∈ A it satisfies
the following extension property : s ∼ t implies that next(s, x) ∼ next(t, x). It
can then be easily seen that the bisimilarity relation is a bisimulation. In fact,
it is the largest bisimulation for the transducer G.

Definition 20 (Coherence). Suppose G = (St, init, o, next, out) : G(A,B) is a
stream transducer. We say that G is coherent if it satisfies the following:
(N1) next(init, 1) ∼ init.
(N2) next(init, xy) ∼ next(next(init, x), y) for every x, y ∈ A.
(O1) o · out(init, 1) = o.
(O2) o · out(init, xy) = o · out(init, x) · out(next(init, x), y) for every x, y ∈ A.

The coherence conditions of Definition 20 capture the idea that the trans-
ducer behaves in “essentially the same way” regardless of how the input is split
into fragments. For example, the condition (N2) says that the two-step transi-
tion init→x s1 →y s2 and the single-step transition init→xy t1 end up in states
(s2 and t1) that will have exactly the same behavior in the subsequent compu-
tation. In other words, it does not matter whether the input xy was fed to the
transducer as a single fragment xy or as a sequence of two fragments 〈x, y〉.

Let (A, ·, 1) be a monoid. A factorization of an element x ∈ A is a sequence
x1, . . . , xn of elements of A such that x = x1 · · ·xn. In particular, the empty
sequence ε ∈ A∗ is a factorization of 1. In other words, x̄ ∈ A∗ is a factorization
of x ∈ A if π(x̄) = x.

Theorem 21 (Factorization Independence). Let G = (St, init, o, next, out)
be a stream transducer of type G(A,B). If G is coherent, then for every x ∈ A
and every factorization x̄ ∈ A∗ of x we have that o ·gout(init, x̄) = o ·out(init, x).

Proof. For clarity, we write 〈x1, x2, . . . , xn〉 ∈ A∗ to denote a finite sequence of
elements of A. The following properties hold for all s ∈ St, x̄ ∈ A∗ and y ∈ A:

gnext(s, x̄ · 〈y〉) = next(gnext(s, x̄), y) (1)

gout(s, x̄ · 〈y〉) = gout(s, x̄) · out(gnext(s, x̄), y) (2)

eout(s, x̄ · 〈y〉) = eout(s, x̄) · 〈out(gnext(s, x̄), y)〉 (3)

Each property shown above can be proved by induction on the sequence x̄.
Consider an arbitrary coherent stream transducer G = (St, init, o, next, out).

We claim that G satisfies the following coherence property:

gnext(init, 〈x1, . . . , xn〉) ∼ next(init, x1 · · ·xn) for all 〈x1, . . . , xn〉 ∈ A∗. (N*)
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The proof is by induction on the length of the sequence. For the base case, we
have that gnext(init, ε) = init and next(init, 1) are bisimilar because G is coherent
(recall Property (N1) of Definition 20). For the induction step we have:

gnext(init, x̄ · 〈y〉) = next(gnext(init, x̄), y) [Equation (1)]

∼ next(next(init, π(x̄)), y) [I.H., extension]

∼ next(init, π(x̄) · y), [coherence (N2)]

which is equal to next(init, π(x̄ · 〈y〉)). This concludes the proof of the claim (N*).
The proof of the theorem proceeds by induction on x̄ ∈ A∗. For the base case,

observe that o · gout(init, ε) = o · 1 = o is equal to o · out(init, 1) = o (property
(O1) for G). For the induction step, we have:

o · gout(init, x̄ · 〈y〉) = o · gout(init, x̄) · out(gnext(init, x̄), y) [Eq. (2)]

= o · out(init, π(x̄)) · out(gnext(init, x̄), y) [I.H.]

= o · out(init, π(x̄)) · out(next(init, π(x̄)), y) [Prop. (N*)]

= o · out(init, π(x̄) · y) [Prop. (O2)]

which is equal to o · out(init, π(x̄ · 〈y〉)). ut

Theorem 21 says that the condition of coherence guarantees a basic correct-
ness property for stream transducers: the output that they produce does not
depend on the specific way in which the input was partitioned into fragments.

For a transducer G = (St, init, o, next, out) we define the function JGK : A∗ →
B∗ as follows: JGK(x̄) = 〈o〉 · eout(init, x̄) for every x̄ ∈ A∗. We call JGK the
interpretation or denotation of G. The definition of JGK implies that JGK(ε) =
〈o〉 and the following holds for every x̄ ∈ A∗ and y ∈ A:

JGK(x̄ · 〈y〉) = JGK(x̄) · 〈out(gnext(init, x̄), y)〉 (4)

When G is coherent, Theorem 21 says that the denotation gives the same cumu-
lative output for any two factorizations of the input. We say that the transducers
G1 and G2 are equivalent if their denotations are equal, i.e. JG1K = JG2K.

Definition 22 (The Implementation Relation). Let A,B be monoids, G :
G(A,B) be a stream transducer, and 〈β, µ〉 : STrans(A,B) be a stream transduc-
tion. We say that G implements 〈β, µ〉 if JGK(x̄) = F(β, µ)(x̄) for every x̄ ∈ A∗.

Theorem 23 (Implementation & Coherence). A stream transducer G :
G(A,B) is coherent if and only if it implements some stream transduction.

Proof. Suppose that G = (St, init, o, next, out) : G(A,B) is a coherent transducer.
Define the function β : A → B by β(x) = o · out(init, x) for every x ∈ A, and
the function µ : A × A → B by µ(x, y) = out(next(init, x), y) for all x, y ∈
A. For any x, y ∈ A, we have to establish that β(x) · µ(x, y) = β(xy). This
follows immediately from Part (O2) of the coherence property for G. So, 〈β, µ〉
is a stream transduction. It remains to prove that G implements 〈β, µ〉, that is,
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JGK(x̄) = F(β, µ)(x̄) for every x̄ ∈ A∗. For the base case, we have JGK(ε) = 〈o〉
and F(β, µ)(ε) = 〈β(1)〉, which are equal because β(1) = o · out(init, 1) = o by
(O1). For the step case, we observe that:

JGK(x̄ · 〈y〉) = JGK(x̄) · 〈out(gnext(init, x̄), y)〉 [Equation (4)]

F(β, µ)(x̄ · 〈y〉) = F(β, µ)(x̄) · 〈µ(π(x̄), y)〉 [def. of F(β, µ)]

By the induction hypothesis, it suffices to show that out(gnext(init, x̄), y) is
equal to µ(π(x̄), y) = out(next(init, π(x̄)), y). This follows from the fact that
gnext(init, x̄) and next(init, π(x̄)) are bisimilar, see Property (N*).

For the converse, suppose that G = (St, init, o, next, out) : G(A,B) is a trans-
ducer that implements 〈β, µ〉 : STrans(A,B). Define the relation R as:

R = {(s, t) ∈ St× St | there are x̄, ȳ ∈ A∗ with π(x̄) = π(ȳ) s.t.

s = gnext(init, x̄) and t = gnext(init, ȳ)}.

We claim that R is a bisimulation. Consider arbitrary states s, t ∈ St with
sRt and z ∈ A. It follows that there are x̄, ȳ ∈ A∗ with π(x̄) = π(ȳ) such that
s = gnext(init, x̄) and t = gnext(init, ȳ). We have to show that out(s, z) = out(t, z)
and next(s, z)R next(t, z). First, notice that:

JGK(x̄ · 〈z〉) = JGK(x̄) · 〈out(s, z)〉 [Equation (4), def. of s]

F(β, µ)(x̄ · 〈z〉) = F(β, µ)(x̄) · 〈µ(π(x̄), z)〉 [def. of F(β, µ)]

Since G implements 〈β, µ〉, we have that JGK(x̄ · 〈z〉) = F(β, µ)(x̄ · 〈z〉) and there-
fore out(s, z) = µ(π(x̄), z). Similarly, we can obtain that out(t, z) = µ(π(ȳ), z).
From π(x̄) = π(ȳ) we get that µ(π(x̄), z) = µ(π(ȳ), z), and therefore out(s, z) =
out(t, z). Now, observe that s′ = next(s, z) = next(gnext(init, x̄), z) = gnext(x̄ ·
〈z〉) using Property 1. Similarly, we have that t′ = next(t, z) = gnext(ȳ · 〈z〉).
From π(x̄ · 〈z〉) = π(x̄)z = π(ȳ)z = π(ȳ · 〈z〉) we conclude that s′Rt′. We have
thus established that R is a bisimulation.

Now, we are ready to prove that G is coherent. We will only present the cases
of Part (N2) and Part (O2), since they are the most interesting ones. Let x, y ∈ A.
For Part (N2), we have to show that the states s = next(next(init, x), y) and
t = next(init, xy) are bisimilar. Since R (previous paragraph) is a bisimulation, it
suffices to show that (s, t) ∈ R. Indeed, this is true because s = gnext(init, 〈x, y〉),
t = gnext(init, 〈xy〉) and π(〈x, y〉) = xy = π(〈xy〉). For Part (O2), we have that
JGK(〈xy〉) = 〈o, out(init, xy)〉 and F(β, µ)(〈xy〉) = 〈β(1), µ(1, xy)〉, as well as

JGK(〈x, y〉) = 〈o, out(init, x), out(next(init, x), y)〉 and

F(β, µ)(〈x, y〉) = 〈β(1), µ(1, x), µ(x, y)〉,

using the definitions of JGK and F. Since G implements 〈β, µ〉, we know that
JGK(〈x, y〉) = F(β, µ)(〈x, y〉) and JGK(〈xy〉) = F(β, µ)(〈xy〉). Using all the above,
we get that o · out(init, x) · out(next(init, x), y) = β(1) · µ(1, x) · µ(x, y) = β(x) ·
µ(x, y) = β(xy) and o · out(init, xy) = β(1) · µ(1, xy) = β(xy). So, Part (O2) of
the coherence property holds. ut
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Theorem 23 provides justification for our definition of the coherence property
for stream transducers (recall Definition 20). It says that the definition is ex-
actly appropriate, because it is a necessary and sufficient condition for a stream
transducer to have a stream transduction as its denotation. In other words, the
coherence property characterizes the transducers have a well-defined denota-
tional semantics in terms of transductions. It offers this guarantee of correctness
without limiting their expressive power as implementations of transductions.

Theorem 24 (Expressive Completeness). Let A and B be monoids, and
〈β, µ〉 be a stream transduction in STrans(A,B). There exists a coherent stream
transducer that implements 〈β, µ〉.

Proof. Recall from Definition 8 that the monotonicity witness function µ satisfies
the following property: β(x) · µ(x, y) = β(xy) for every x, y ∈ A. Now, we define
the transducer G = (St, init, o, next, out) as follows: St = A, init = 1, o = β(1),
next(s, x) = s · x and out(s, x) = µ(s, x) for every state s ∈ St and input x ∈ A.
The following properties hold for every s ∈ St and 〈x1, . . . , xn〉 ∈ A∗:

gnext(s, 〈x1, . . . , xn〉) = s · x1 · · ·xn and (5)

〈o〉 · eout(init, 〈x1, . . . , xn〉) = F(β, µ)(〈x1, . . . , xn〉) (6)

Both these properties are shown by induction on the sequence 〈x1, . . . , xn〉. It
follows that JGK(x̄) = 〈o〉 · eout(init, x̄) = F(β, µ)(x̄) for every x̄ ∈ A∗. So, G
implements the transduction 〈β, µ〉. Finally, G is coherent by Theorem 23. ut

Theorem 24 assures us that the abstract computational model of coherent
stream transducers is expressive enough to implement any stream transduction.
For this reason, we will be using stream transducers as the basic programming
model for describing streaming computations.

Example 25 (Correctness of Flatten). Using induction, we will show that
the transducer G = Flatten(A) = (Unit, ?, 1A, next, out) implements the trans-
duction 〈π, µ〉 = flatten(A) for a monoid A (recall Examples 12 and 17). We
show by induction that JGK(x̄) = F(π, µ)(x̄) for every x̄ ∈ FSeq(A)∗. For the
base case, we have that JGK(ε) = 〈1A〉 and F(π, µ)(ε) = 〈π(ε)〉 = 〈1A〉. Now,

JGK(x̄ · 〈y〉) = JGK(x̄) · 〈out(gnext(init, x̄), y)〉 [def. of JGK]
= F(π, µ)(x̄) · 〈π(y)〉 [I.H. and def. of out]

= F(π, µ)(x̄) · 〈µ(π(x̄), y)〉 [def. of µ]

= F(π, µ)(x̄ · 〈y〉) [def. of F]

for all x̄ ∈ FSeq(A)∗ and y ∈ FSeq(A). We have thus proved that Flatten(A) is
correct: its denotation is equal to the intended semantics.

Example 26 (Correctness of Split). We will establish that the transducer for
splitting in batches is correct, namely that G = Split(r) = (A, 1A, ε, next, out)
implements 〈r1, µ〉 = split(r) for a splitter r = (r1, r2) for the monoid A (recall
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Examples 13 and 18). Using the properties of splitters and an argument by
induction, we obtain that gnext(init, x̄) = r2(π(x̄)) for every x̄ ∈ A∗. We show
by induction that JGK(x̄) = F(r1, µ)(x̄) for every x̄ ∈ A∗. For the base case, we
have that JGK(ε) = 〈ε〉 and F(r1, µ)(ε) = 〈r1(1A)〉 = 〈ε〉. Now,

JGK(x̄ · 〈y〉) = JGK(x̄) · 〈out(gnext(init, x̄), y)〉 [Equation (4)]

= F(r1, µ)(x̄) · 〈out(r2(π(x̄)), y)〉 [I.H. and previous claim]

= F(r1, µ)(x̄) · 〈r1(r2(π(x̄)) · y)〉 [def. of out]

= F(r1, µ)(x̄) · 〈µ(π(x̄), y)〉 [def. of µ]

= F(r1, µ)(x̄ · 〈y〉) [def. of F]

for all x̄ ∈ A∗ and y ∈ A. We have thus established that Split(r) is correct: its
denotation is equal to the intended semantics.

5 Combinators for Deterministic Dataflow

We consider four dataflow combinators: (1) the lifting of pure morphisms to
streaming computations, (2) serial composition for exposing pipeline parallelism,
(3) parallel composition for exposing task-based parallelism, and (4) feedback
composition for describing computations whose current output depends on pre-
viously produced output. The combinators are defined both for stream transduc-
tions (semantic objects) and for stream transducers (programs). Table 1 shows
the definitions. The lifting of pure morphisms is implemented with a stateless
transducer (i.e., the state space is a singleton set). Both parallel and serial com-
position are implemented using a product construction on transducers. In the
case of parallel composition, each component computes independently. In the
case of serial composition, the output of the first component is passed as input
to the second component. In the case of feedback composition, the computation
proceeds in well-defined rounds in order to prevent divergence.

We prove a precise correspondence between the semantics-level and program-
level combinators for all cases: lifting (Proposition 27), parallel composition
(Propsition 28), serial composition (Proposition 29), and feedback composition
(Proposition 30). These are essentially correctness properties for the imple-
mentations of the combinators Lift, Par, Serial, Loop. They establish that our
typed framework is appropriate for the modular specification of complex stream-
ing computations, as it can support composition constructs that are essential for
parallelization and distribution.

Proposition 27 (Lifting). Let h : A→ B be a monoid homomorphism. Then,
Lift(h) is a coherent transducer and it implements the transduction lift(h).

Proposition 28 (Parallel Composition). Let A1, A2, B1, B2 be monoids,
〈β1, µ1〉 : STrans(A1, B1) and 〈β2, µ2〉 : STrans(A2, B2) be transductions, and
G1 : G(A1, B1) and G2 : G(A2, B2) be transducers.
(1) Implementation: If G1 implements 〈β1, µ1〉 and G2 implements 〈β2, µ2〉,

then Par(G1,G2) implements 〈β1, µ1〉 ‖ 〈β2, µ2〉.
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Table 1. Combinators for deterministic dataflow.

Lifting of monoid homomorphisms

monoid homomorphism h : A→ B

lift(h) = 〈β, µ〉 : STrans(A,B)

β(x) = h(x)

µ(x, y) = h(y)

Lift(h) = (St, init, o, next, out)

St = Unit

init = ?

o = h(1)

next(s, x) = s

out(s, x) = h(x)

Parallel composition

〈β1, µ1〉 : STrans(A1, B1) 〈β2, µ2〉 : STrans(A2, B2)

〈β1, µ1〉 ‖ 〈β2, µ2〉 = 〈β, µ〉 : STrans(A1 ×A2, B1 ×B2)

β(〈x1, x2〉) = 〈β1(x1), β2(x2)〉 µ(〈x1, x2〉, 〈y1, y2〉) = 〈µ1(x1, y1), µ2(x2, y2)〉
G1 = (St1, init1, o1, next1, out1)

G2 = (St2, init2, o2, next2, out2)

Par(G1,G2) = (St, init, o, next, out)

St = St1 × St2

init = 〈init1, init2〉
o = 〈o1, o2〉

next(〈s1, s2〉, 〈a, c〉) = 〈next1(s1, a), next2(s2, c)〉
out(〈s1, s2〉, 〈a, c〉) = 〈out1(s1, a), out2(s2, c)〉

Serial composition

〈β1, µ1〉 : STrans(A,B) 〈β2, µ2〉 : STrans(B,C)

〈β1, µ1〉 � 〈β2, µ2〉 = 〈β, µ〉 : STrans(A,C)

β(x) = β2(β1(x))

µ(x, y) = µ2(β1(x), µ1(x, y))

G1 = (St1, init1, o1, next1, out1)

G2 = (St2, init2, o2, next2, out2)

Serial(G1,G2) = (St1×St2, init, o, next, out)
init = 〈init1, next2(init2, o1)〉

o = o2 · out2(init2, o1)
next(〈s1, s2〉, a) = 〈next1(s1, a),

next2(s2, out1(s1, a))〉
out(〈s1, s2〉, a) = out2(s2, out1(s1, a))

Feedback composition

〈β, µ〉 : STrans(A×B,B)

loopB(β, µ) = 〈γ, ν〉 : STrans(FSeq(A),FSeq(B))

γ(〈a1, . . . , an〉) = 〈b0, b1, . . . , bn〉
γ(ε) = 〈b0〉, where b0 = β(1A, 1B)

γ(〈a1, . . . , an, an+1〉) = γ(〈a1, . . . , an〉) · 〈bn+1〉, where

bn+1 = µ(〈a1 · · · an, b0b1 · · · bn−1〉, 〈an+1, bn〉)
G = (St, init, o, next, out) : G(A×B,B)

LoopB(G) = (St′, init′, o′, next′, out′) : G(FSeq(A),FSeq(B))

St′ = St×B (second component: last output batch)

init′ = 〈init, o〉 and o′ = 〈o〉
next′(〈s, b〉, a) = 〈next(s, 〈a, b〉), out(s, 〈a, b〉)〉
out′(〈s, b〉, a) = 〈out(s, 〈a, b〉)〉

〈β, µ〉 : STrans(A×B,B) splitter r for A

loop(β, µ, r) = split(r)� loopB(β, µ)� flatten(B) : STrans(A,B)

G : G(A×B,B) splitter r for A

Loop(G, r) = Serial(Split(r), LoopB(G), Flatten(B)) : G(A,B)
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(2) Coherence: If G1 and G2 are coherent, then so is Par(G1,G2).

Proof. Notice that Part (2) follows immediately from Part (1) and Theorem 23.
Define f = JPar(G1,G2)K and 〈β, µ〉 = 〈β1, µ1〉 ‖ 〈β2, µ2〉. We will show that
f(w̄) = F(β, µ)(w̄) for every w̄ ∈ (A1×A2)∗. Suppose that fst is the (elementwise)
left projection function. We claim that fst(gnext(s, w̄)) = gnext1(fst(s), fst(w̄))
and fst(eout(s, w̄)) = eout1(fst(s), fst(w̄)) for all s ∈ St and w̄ ∈ (A1×A2)∗. Both
claims are shown by induction on the length of w̄. With similar arguments we can
obtain that snd(f(w̄)) = JG2K(snd(w̄)) for every w̄ ∈ (A1×A2)∗. It can be shown
by induction that fst(F(β, µ)(w̄)) = F(β1, µ1)(fst(w̄)) and snd(F(β, µ)(w̄)) =
F(β1, µ1)(snd(w̄)) for all w̄ ∈ (A1 × A2)∗. In order to establish that f(w̄) =
F(β, µ)(w̄), it suffices to show that fst(f(w̄)) = fst(F(β, µ)(w̄)) and snd(f(w̄)) =
snd(F(β, µ)(w̄)). Given the claims shown previously, these equalities are equiv-
alent to JG1K(fst(w̄)) = F(β1, µ1)(fst(w̄)) and JG2K(snd(w̄)) = F(β2, µ2)(snd(w̄))
respectively. These equalities follow from the assumptions that G1 implements
〈β1, µ1〉 and G2 implements 〈β2, µ2〉. ut

Proposition 29 (Serial Composition). Let A, B, C be monoids, 〈β1, µ1〉 :
STrans(A,B) and 〈β2, µ2〉 : STrans(B,C) be transductions, and G1 : G(A,B) and
G2 : G(B,C) be transducers.
(1) Implementation: If G1 implements 〈β1, µ1〉 and G2 implements 〈β2, µ2〉,

then Serial(G1,G2) implements 〈β1, µ1〉 � 〈β2, µ2〉.
(2) Coherence: If G1 and G2 are coherent, then so is Serial(G1,G2).

Proof. Part (2) follows easily from Part (1) and Theorem 23. In order to prove
Part (1) we have to first establish a number of preliminary facts. We define the
function M2 : A∗ → A as follows: M2(ε) = 1, M2(〈x〉) = x for x ∈ A, and
M2(〈x, y〉 · z̄) = 〈xy〉 · z̄ for x, y ∈ A and z̄ ∈ A∗. We write G to denote G1 � G2.

fst(gnext(s, x̄)) = gnext1(fst(s), x̄) for all s ∈ St and x̄ ∈ A∗ (7)

snd(gnext(s, x̄)) = gnext2(snd(s), eout1(fst(s), x̄)) for all s ∈ St and x̄ ∈ A∗ (8)

JGK(x̄) = M2(JG2K(JG1K(x̄))) for all x̄ ∈ A∗ (9)

F(β, µ)(x̄) = M2(F(β2, µ2)(F(β1, µ1)(x̄))) for all x̄ ∈ A∗ (10)

where 〈β, µ〉 = 〈β1, µ1〉 � 〈β2, µ2〉. All four claims above are proved by induction
on the sequence x̄. Equations (7) and (8) are needed to prove Equation (9). Now,
we will establish that G implements 〈β, µ〉. Indeed, we have that

JGK(x̄) = M2(JG2K(JG1K(x̄))) [Equation (9)]

= M2(JG2K(F(β1, µ1)(x̄))) [G1 implements 〈β1, µ1〉]
= M2(F(β2, µ2)(F(β1, µ1)(x̄))) [G2 implements 〈β2, µ2〉]
= F(β, µ)(x̄) [Equation (10)]

for every x̄ ∈ A∗. So, we conclude that G implements 〈β, µ〉. ut

Let us give an example of how to construct complex computations from sim-
pler ones using the dataflow combinators. Let A,B be sets and op : A → B
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be a function. We want to describe a streaming computation with two input
channels, both of type FBag(A), and one output channel of type FBag(B).
The computation transforms both input channels in the same way, namely by
applying the function op to each element. This gives two output substreams,
both of type FBag(B), that are merged into the output stream. The function
op : A → B lifts to a monoid homomorphism op : FBag(A) → FBag(B), given
by op(x) = {op(a) | a ∈ x} for every multiset x. The streaming computation
described previously can be visualized using the dataflow graph shown below.

Merge
Lift(op)

Lift(op)

FBag(A)

FBag(A)

FBag(B)

FBag(B)

FBag(B)

Each edge of the graph represents a communication channel along which a stream
flows, and it is annotated with the type of the stream. The dataflow graph
above represents the transducer G = Serial(Par(Lift(op), Lift(op)), Merge),
where Merge : G(FBag(A)×FBag(A),FBag(A)) is the transducer of Example 16.
From Propositions 27, 29 and 28 we obtain that G implements the transduction
(lift(op) ‖ lift(op))� merge, where merge is described in Example 11.

We will now consider the feedback combinator, which introduces cycles in
the dataflow graph. One consequence of cyclic graphs in the style of Kahn-
MacQueen [60] is that divergence can be introduced, that is, a finite amount
of input can cause an operator to enter an infinite loop. For example, consider
the transducer Merge : G(FBag(A) × FBag(A),FBag(A)) of Example 16. The
figure below visualizes the dataflow graph, where the output channel of Merge
is connected to one of its input channels, thus forming a feedback loop.

Merge •FBag(A) FBag(A) FBag(A)

Suppose that the singleton input {a} is fed to the input of the dataflow graph
above, which corresponds to the first input channel of Merge. This will cause
Merge to emit {a}, which will be sent again to the second input channel of Merge.
Intuitively, this will cause the computation to enter an infinite loop (divergence)
of consuming and emitting {a}. This behavior is undesirable in systems that
process data streams, because divergence can make the system unresponsive. For
this reason, we will consider here a form of feedback that eliminates this problem
by ensuring that the computation of a feedback loop proceeds in a sequence of
rounds. This avoid divergence, because the computation always makes progress
by moving from one round to the next, as dictated by the input data. We describe
this organization in rounds by requiring that the programmer specifies a splitter
(recall Example 18). The splitter decomposes the input stream into batches,
and one round of computation for the feedback loop corresponds to consuming
one batch of data, generating the corresponding output batch, and sending the
output batch along the feedback loop to be available for the next round of
processing. This form of feedback allows flexibility in specifying what constitutes
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a single batch (and thus a single round), and therefore generalizes the feedback
combinator of Synchronous Languages such as Lustre [31].

Proposition 30 (Feedback Composition). Let A and B be monoids, 〈β, µ〉 :
STrans(A,B) be a transduction, G : G(A,B) be a transducer, and r = (r1, r2)
be a splitter for A (see Example 13).
(1) Implem.: If G implements 〈β, µ〉, then Loop(G, r) implements loop(β, µ, r).
(2) Coherence: If G is coherent, then so is Loop(G, r).

Proof. We leave to the reader the proofs that Split (Example 18) implements
split and that Flatten (Example 17) implements flatten. Given Proposition 29,
it suffices to show that G′ = LoopB(G) implements 〈γ, ν〉 = loopB(β, µ). Since
G′ is of type G(FSeq(A),FSeq(B)) it suffices to define the transition and output
functions on singleton sequences (as done in Table 1), because there is a unique
way to extend them so that G′ is coherent. It remains to show that JG′K(x̄) =
F(γ, ν)(x̄) for every x̄ ∈ FSeq(A)∗. The base case is easy, and for the step case it
suffices to show that out′(gnext′(init′, x̄), y) = ν(π(x̄), y) for every x̄ ∈ FSeq(A)∗
and y ∈ FSeq(A). As we discussed before, gnext′ and out′ can be viewed as being
defined on elements ofA rather than sequences of FSeq(A), so we can equivalently
prove that out′(gnext′(init′, 〈a1, . . . , an〉), an+1) = ν(〈a1, . . . , an〉, an+1) with each
ai an element of A. Given that G implements 〈β, µ〉, the key observation to finish
the proof is gnext′(init′, 〈a1, . . . , an〉) = 〈gnext(init, 〈〈a1, b0〉, . . . , 〈an, bn−1〉〉), bn〉,
where γ(〈a1, . . . , an〉) = 〈b0, b1, . . . , bn〉. ut

Example 31. For an example of using the feedback combinator, consider the
transduction 〈β, µ〉 which adds two input streams of numbers pointwise. That
is, β : FSeq(N)× FSeq(N)→ FSeq(N) is defined by β(x1x2 . . . xm, y1y2 . . . yn) =
0(x1 + y1)(x2 + y2) . . . (xk + yk) where k = min(m,n). Additionally, consider
the trivial splitter r = (r1, r2) for sequences where each batch is a singleton:
r1(x1 . . . xn) = 〈x1, . . . , xn〉 and r2(x1 . . . xn) = ε. We use this splitter to enforce
that each batch is a single element and that each round of the computation
involves consuming one element. Finally, the transduction loop(β, µ, r) = 〈γ, ν〉
describes the running sum, that is, γ(x1 . . . xn) = 0x1(x1+x2) . . . (x1+ · · ·+xn).

The dataflow combinators of this section could form the basis of query lan-
guage design. The StreamQRE language [10,84] and related formalisms [9,11,12,
14] are based on a set of combinators for efficiently processing linearly-ordered
streams (e.g., time series [3, 4]). Extending a language like StreamQRE to the
typed setting of stream transductions is an interesting research direction.

6 Algebraic Reasoning for Optimizing Transformations

Our typed denotational framework can be used to validate optimizing transfor-
mations using algebraic reasoning. This amounts to establishing that the original
transducer is equivalent to the optimized one. A fundamental approach for show-
ing equivalence of composite transducers is to establish algebraic laws between
basic building blocks, and then use algebraic rewriting.
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As a concrete example, consider the per-key streaming aggregation of Exam-
ple 10, which is described by the transduction reduce(K, op) : STrans(FBag(K×
V ),FMap(K,V )), where K is the set of keys, V is the set of values, and op :
V × V → V is an associative and commutative aggregation operation. Let
h : K → {1, . . . , n} be a hash function for the keys, and define Kh

i = h−1(i) =
{k ∈ K | h(k) = i} for every i. Consider two variants of the merging operation of
Example 11: (1) kmerge(h) merges n input streams of types FBag(Kh

1 ×V ), . . . ,
FBag(Kh

n ×V ) respectively into an output stream of type FBag(K×V ), and (2)
mmerge(h) merges n input streams of types FMap(Kh

1 , V ), . . . , FMap(Kh
n , V )

respectively into an output stream of type FMap(K,V ). We also consider the
transduction ksplit(h) that partitions an input stream of type FBag(K × V )
into n output substreams of types FBag(Kh

1 × V ), . . . , FBag(Kh
n × V ) respec-

tively. Using elementary set-theoretic arguments, the following equalities can be
established: ksplit(h)� kmerge(h) = id and

kmerge(h)� rd(K, op) = (rd(Kh
1 , op) ‖ · · · ‖ rd(Kh

n , op))� mmerge(h),

where rd abbreviates reduce. Next, we consider the corresponding transducers
KSplit(h), KMerge(h), Id, Reduce(K, op) (abbreviation Rd) and MMerge(h) and
establish that they implement the respective transductions. This can be shown
with induction proofs as shown earlier in Example 25 and Example 26. Using
these facts and the propositions of Sect. 5, the equalities between transductions
shown earlier give the following equations (equivalences) between transducers:
KSplit(h)� KMerge(h) ≡ Id and

KMerge(h)� Rd(K, op) ≡ (Rd(Kh
1 , op) ‖ · · · ‖ Rd(Kh

n , op))� MMerge(h).

Using these equations, we can establish the following optimizing transformation
for data parallelization, which is useful when processing high-rate data streams.

Reduce(K, op) ≡ Id� Reduce(K, op)

≡ KSplit(h)� KMerge(h)� Reduce(K, op)

≡ KSplit(h)� (Rd(Kh
1 , op) ‖ · · · ‖ Rd(Kh

n , op))� MMerge(h).

The above equation illustrates our proposed style of reasoning for establishing
the soundness of optimizing streaming transformations: (1) prove equalities be-
tween transductions using elementary set-theoretic arguments, (2) prove that
the transducers (programs) implement the transductions (denotations) using
induction, (3) translate the equalities between transductions into equivalences
between transducers using the results of Sect. 5, and finally (4) use algebraic
reasoning to establish more complex equivalences.

The example of this section is simple but illustrates two key points: (1) our
data types for streams (monoids) capture important invariants about the streams
that enable transformations, and (2) useful program transformations can be
established with denotational arguments that require an appropriate notion of
transduction. This approach opens up the possibility of formally verifying the
wealth of optimizing transformations that are used in stream processing systems.
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The papers [54, 101] describe several of them, but use informal arguments that
rely on the operational intuition about streaming computations. Our approach
here, on the other hand, relies on rigorous denotational arguments.

The equational axiomatizations of arrows [56] and traced monoidal categories
[58] are relevant to our setting, but would require adaptation. An interesting
question is whether a complete axiomatization can be provided for the basic
dataflow combinators of Sect. 5, similarly to how Kleene Algebra (KA) [62, 63]
and its extensions [49,64,79,83] (as well as other program logics [65,66,78,80–82])
capture properties of imperative programs at the propositional level. We also
leave for future work the development of the coalgebraic approach [96–98] for
reasoning about the equivalence of stream transducers. We have already defined
a notion of bisimulation in Sect. 4, which could give an alternative approach for
proving equivalence using coinduction on the transducers.

7 Related Work

Sect. 1 contains several pointers to related literature for stream processing. In
this section, we will focus on prior work that specifically addresses aspects of
formal semantics for streaming computation.

The seminal work of Gilles Kahn [59] is exemplary in its rigorous treatment
of denotational semantics for a language of deterministic dataflow graphs
of independent processes, which access their input channels using blocking read
statements and the output channels using nonblocking write statements. The lan-
guage Lustre [31] is a synchronous restriction of Kahn’s model, which introduces
the semantic idea of a clock for specifying the rate of a stream. Other notable
synchronous formalisms are the language Signal [21,72] and Esterel [22,28], and
the synchronous dataflow graphs of [73] and [24]. These formalisms are all de-
terministic, in the sense the the output is determined purely by the input data.
Nondeterminism creates unavoidable semantic complications [30].

The CQL language [16] is a streaming extension of a relational database
language with additional constructs for time-based windowing. The denotational
semantics of CQL [17] can be reconstructed and greatly simplified within our
framework using the notion of stream described in Example 7 (finite time-varying
multisets). There are several works that deal with the semantics of specific lan-
guage constructs (e.g., windows), notions of time, punctuations and disordered
streams, but do not give a mathematical description of the overall streaming
computation [5, 7, 25,44,67,75,76,109].

The literature on Functional Reactive Programming (FRP) [34, 46, 47, 55,
68, 69, 93, 103] is closely related to the deterministic dataflow formalisms men-
tioned earlier. The main abstractions in FRP are signals and event sequences,
which are linearly ordered data. Processing unordered data (e.g., multisets and
maps) and extracting data parallelism (e.g., the per-key aggregation of Sect. 6)
require a data model that goes beyond linear orders. In particular, the axioms
of arrows [56] (often used in FRP) cannot prove the soundness of the optimizing
transformation of Sect. 6, which requires reasoning about multisets.
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The idea of using types to classify streams has been recently explored in [85]
(see also [13]), but only for a restricted class of types that correspond to partial
orders. No general abstract model of computation is presented in [85], and many
of the examples in this paper cannot be adequately accomodated.

The mathematical framework of coalgebras [97] has been used to describe
streams [98]. One advantage of this approach is that proofs of equivalence can
be given using the proof principle of coinduction [96], which in many cases offers
a useful alternative to proofs by induction. This line of work mostly focuses on
infinite sequences of elements, whereas here we focus on the transformation of
streams of data that can be of various different forms (not just sequences).

The idea to model the input/output of automata using monoids has appeared
in the algebraic theory of automata and transducers. Monoids (non-free, e.g.
A∗ ×B∗) have been used to generalize automata from recognizers of languages
to recognizers of relations [45], which are sometimes called rational transduc-
ers [100]. Our focus here is on (deterministic) functions, as models that recog-
nize relations can give rise to the Brock-Ackerman anomaly [30]. The automata
models (with inputs from a free monoid A∗) most closely related to our stream
transducers are deterministic: Mealy machines [87], Moore machines [90], se-
quential transducers [48, 95], and sub-sequential transducers [102]. The concept
of coherence that we introduce here (Definition 20) does not arise in these mod-
els, because they do not operate on input batches. An algebraic generalization
of a deterministic acceptor is provided by a right monoid action δ : St×A→ St
(see page 231 of [100]), which satisfies the following properties for all s ∈ St and
x, y ∈ A: (1) δ(s, 1) = s, and (2) δ(δ(s, x), y) = δ(s, xy). These properties look
similar to (N1) and (N2) of Definition 20. They are, however, too restrictive for
our stream transducers, as they would falsify Theorem 23.

8 Conclusion

We have presented a typed semantic framework for stream processing, based
on the idea of abstracting data streams as elements of algebraic structures
called monoids. Data streams are thus classified using monoids as types. Stream
transformations are modeled as monotone functions, which are organized by in-
put/output type. We have adapted the classical model of string transducers to
our setting, and we have developed a general theory of streaming computation
with a formal denotational semantics. The entire technical development in this
paper is constructive, and therefore lends itself well to formalization in a proof
assistant such as Coq [23,35,106]. Our framework can be used for the formaliza-
tion of streaming models, and the validation of subtle optimizations of stream-
ing programs (e.g., Sect. 6), such as the ones described in [54, 101]. We have
restricted our attention in this paper to deterministic streaming computation,
in the sense that the behaviors that we model have predictable and reproducible
results. Nondeterminism causes fundamental semantic difficulties [30], and it is
undesirable in applications where repeatability is important.
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