
Static Analysis for Efficient Streaming Tokenization
Angela W. Li

awl@rice.edu
Rice University

Houston, Texas, USA

Yudi Yang

yudi.yang@rice.edu
Rice University

Houston, Texas, USA

Konstantinos Mamouras

mamouras@rice.edu
Rice University

Houston, Texas, USA

Abstract
Tokenization, also referred to as lexing or scanning, is the

computational task of partitioning an input text into a se-

quence of substrings called tokens. Tokenization is one of

the first stages of program compilation, it is used in natural

language processing, and it is also useful for processing un-

structured text or semi-structured data such as JSON, CSV,

and XML. A tokenizer is typically specified as a list of regular

expressions, which is called a tokenization grammar. Each

regular expression describes a class of tokens (e.g., integer,

floating-point number, variable identifier, string literal). The

semantics of tokenization employs the longest match policy

to disambiguate among the possible choices. This policy says

that we should prefer a longer token over a shorter one. It is

also known as the maximal munch policy.

Tokenization is an important computational task when

processing semi-structured data, as it often precedes parsing,

querying, or data transformations. Due to the abundance of

large-scale semi-structured data, which can be too large to

load in memory, it is desirable to perform tokenization in

a streaming fashion with a small memory footprint. First,

we observe that some tokenization grammars are inherently

more difficult to deal with than others, andwe provide a static

analysis algorithm for recognizing them. We continue to pro-

pose the StreamTok algorithm, which relies on this analysis

to enable efficient tokenization. StreamTok is asymptotically

better than the standard algorithm of flex. Our experimental

results show that our implementation of StreamTok outper-

forms state-of-the-art tools for tokenization.

CCS Concepts: • Theory of computation→ Formal lan-
guages and automata theory; Regular languages; • Soft-
ware and its engineering→ Compilers; Parsers.

Keywords: lexical analysis, lexing, scanning, tokenization,
maximal munch semantics, backtracking, data streams

ACM Reference Format:
Angela W. Li, Yudi Yang, and Konstantinos Mamouras. 2026. Static

Analysis for Efficient Streaming Tokenization. In Proceedings of
the 31st ACM International Conference on Architectural Support for

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ASPLOS ’26, Pittsburgh, PA, USA
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2359-9/2026/03

https://doi.org/10.1145/3779212.3790227

Programming Languages and Operating Systems, Volume 2 (ASPLOS
’26), March 22–26, 2026, Pittsburgh, PA, USA. ACM, New York, NY,

USA, 17 pages. https://doi.org/10.1145/3779212.3790227

1 Introduction
Many modern data-driven applications rely on the process-

ing of massive amounts of unstructured (e.g., text corpora

and system logs) or semi-structured data, such as JSON,

YAML, XML, and CSV. Tokenization, also known as scanning

or lexing, is often the first step in processing unstructured

and semi-structured data. Tokenization is the splitting of a

string into a sequence of tokens. The rules that specify how

the string should be split into tokens are typically given by

a list of regular expressions.

Many applications consume streaming data, which is gen-

erated in real time, and need to process and respond with

low latency. Streaming applications have to deal with large

streams that cannot be stored in system memory. For this

reason, stream processing requires the development of tech-

niques that have a small memory footprint. There are sit-

uations where the data is available offline (e.g., on a hard

disk), but is too large to load in the system memory. Stream-

ing techniques are also valuable in such situations because

the data can be read and processed block-by-block without

loading the entire dataset at once.

Here, we focus on the computational problem of tokeniza-

tion in the streaming model. Our techniques can benefit

applications that deal with streaming or static (but too large

to load in memory) unstructured and semi-structured data.

A tokenizer (scanner or lexer), is a program that tokenizes

a given input string. Such a program can be handcrafted

or automatically generated by tools commonly referred to

as lexer generators. In particular, lexer generators take as

input user-defined grammars and output a lexer that will

perform tokenization according to the supplied user-defined

grammar. Some popular lexer generators used in practice

include flex [47], JFlex [23] and Ocamllex [43].

A lexer generator provides useful flexibility compared to

a handcrafted implementation for a fixed grammar. Some

grammars are often adapted by users. E.g., CSV/TSV gram-

mars can vary based on howwe delimit fields, howwe delimit

records, and how we use escaping in fields. Changing a tok-

enizer grammar is a lot easier than changing a handcrafted

implementation of a tokenizer. Even when a grammar is

standardized, adaptation may be useful for a specific applica-

tion. For example, JSON minification (removing unnecessary
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whitespace) can be performed with a simplified (and more ef-

ficient) lexical grammar that identifies whitespace. Moreover,

some applications (e.g., log parsing) require the continual

addition of new formats, which are conveniently handled

with grammars and lexer generators. Finally, there are cases

where we may want to adapt a grammar based on runtime

information. E.g., a CSV parsing tool can use schema infor-
mation (given at runtime as a command-line argument) to

adapt the grammar for recognizing the types of the fields.

The aforementioned lexer generator tools implement the

maximal-munch disambiguation policy, where longer tokens

are preferred over shorter tokens. When there is a tie, the

earliest tokenization rule is preferred. We formulate our tok-

enization problem (§2) according to this policy. It is known

that the standard backtracking-based tokenization algorithm,

which these tools implement, has a worst-case time complex-

ity of 𝑂 (𝑛2), where 𝑛 is the size of the input text.

Tokenization is often a preprocessing step for parsing

and AST generation, but it has more uses. Tokenization can

perform simple transformations on data and reduce data

volume. E.g., to process a specific column in a streaming

CSV file, we can first extract the desired column through

tokenization before propagating the reduced data to the next

stage of the pipeline. Tokenization enables simple queries

and aggregations on (streaming) data, such as counting the

number of numeric fields in a JSON file. Performing queries

directly over the token stream (i.e., without full parsing) is

valuable because processing streaming data is challenging

due to latency and memory constraints.

Efficient tokenization over streaming data presents a chal-

lenge. As we show in §2, streaming tokenization requires

(for some grammars) a memory footprint that is linear in

the stream length. We can, however, restrict our attention

to a class of tokenization grammars that admit low-memory

streaming tokenization. This class contains many grammars

used in practice. Moreover, they can be identified by a static

analysis
1
(see §4). For this class of tokenization grammars, we

propose a time- and space-efficient tokenization algorithm

that is appropriate in the streaming setting (see §5).

Main Contributions:
(1) We consider maximal-munch tokenization in the stream-

ing model and show that it requires (in the worst case)

space that is proportional to the input stream.

(2) We introduce the novel notion of (maximum) token neigh-
bor distance. This semantic notion is used to indentify

the tokenization grammars to which our efficient stream-

ing tokenization algorithm can be applied. We observe

that this notion also sheds light on the worst-case per-

formance of backtracking-based tokenization.

(3) We show that computing the maximum token neighbor

distance for a tokenization grammar is PSPACE-complete

1
We use the term static analysis because it applies to the tokenization

grammar before execution and is independent of the input text.

(Theorems 13, 14). We also propose a static analysis that

takes as input a tokenization grammar and outputs its

maximum token neighbor distance (Theorem 15).

(4) We propose an efficient streaming tokenization algorithm

(StreamTok) applicable to the class of tokenization gram-

mars with bounded maximum token neighbor distance.

(5) We collect tokenization grammars for data exchange for-

mats and a dataset fromGitHub. Our static analysis sheds

some light on the complexity of grammars used in prac-

tice. We find that our streaming tokenization algorithm

applies to a significant portion of these grammars.

(6) Our experimental evaluation shows that the proposed

streaming tokenization algorithm offers a performance

benefit, namely a 2× to 3× speedup, over existing tok-

enization tools such as flex [47]. The memory footprint

of our algorithm is in the order of kilobytes, regardless of

the length of the input stream (which could be infinite).

(7) We consider higher-level applications (log parsing, for-

mat conversions, and data validation) that use tokeniza-

tion and show the performance benefit of our approach.

2 The Streaming Tokenization Problem
We start this section by introducing the tokenization problem.

Then, we discuss tokenization in the streaming model and

present a relevant complexity result.

Let Σ be a finite alphabet of symbols (letters, characters).

A unary predicate 𝜎 ⊆ Σ is called a character class. The
set Reg(Σ) of regular expressions (regexes) is defined by the

grammar 𝑟, 𝑟1, 𝑟2 ::= 𝜀 | 𝜎 | (𝑟1 | 𝑟2) | 𝑟1 · 𝑟2 | 𝑟 ∗. Concatena-
tion is also written as 𝑟1𝑟2 to reduce notational clutter. The

notation 𝑟+ (“repetition of 𝑟 at least once”) is an abbreviation

for 𝑟𝑟 ∗. The notation 𝑟? is an abbreviation for 𝑟 | 𝜀. For a
regular expression 𝑟 , the notation 𝑟𝑛 is an abbreviation for

the concatenation 𝑟 · 𝑟 · · · 𝑟 (𝑛 times). The notation 𝑟 {𝑛} is
also commonly used to describe the repetition of 𝑟 exactly

𝑛 times. More generally, we write 𝑟 {𝑚,𝑛} = 𝑟𝑚 (𝑟?)𝑛−𝑚 to

denote the repetition of 𝑟 from𝑚 to 𝑛 times. Following PCRE

conventions, we also use notation for character classes. For

instance, the regular expression [𝑎𝑏𝑐] accepts a character 𝑎,
𝑏, or 𝑐 , which is equivalent to the regular expressions [𝑎-𝑐]
and 𝑎 | 𝑏 | 𝑐 . Negation can be used inside character classes.

For example, the regex [ˆ𝑎𝑏𝑐] matches any character that is

not 𝑎, 𝑏, or 𝑐 . Every regular expression 𝑟 denotes a language

L(𝑟 ) ⊆ Σ∗, defined as usual.

We write |𝑤 | to denote the length of a string𝑤 . The empty

string (i.e., the string of length 0) is denoted by 𝜀. For a string

𝑤 ∈ Σ∗, we will call a pair [𝑖, 𝑗] with 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝑤 | a loca-
tion in𝑤 . A position in |𝑤 | is an index in the range 0, 1, . . . , |𝑤 |.
We write 𝑤 [𝑖 .. 𝑗] for the substring of 𝑤 at location [𝑖, 𝑗].
E.g., for the string𝑤 = 𝑎𝑏𝑏𝑐𝑎𝑏𝑎𝑏 (length |𝑤 | = 8), we have

that 𝑤 [0..3] = 𝑎𝑏𝑏, 𝑤 [1..5] = 𝑏𝑏𝑐𝑎, 𝑤 [4..7] = 𝑎𝑏𝑎, and

𝑤 [5..8] = 𝑏𝑎𝑏. We also use the abbreviations𝑤 [..𝑖] = 𝑤 [0..𝑖]
and𝑤 [𝑖 ..] = 𝑤 [𝑖 ..|𝑤 |].
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Let 𝑢, 𝑣 ∈ Σ∗. We say that 𝑢 is a prefix of 𝑣 , and we write

𝑢 ≤ 𝑣 , if there is a string 𝑤 ∈ Σ∗ such that 𝑢𝑤 = 𝑣 . When

𝑢 ≤ 𝑣 , we also say that 𝑣 is an extension of 𝑢. The prefix

relation ≤ is a partial order (i.e., reflexive, antisymmetric,

and transitive). The empty string 𝜀 is the least element of

the prefix relation. We write 𝑢 < 𝑣 to denote that 𝑢 ≤ 𝑣 and
𝑢 ≠ 𝑣 , and we say that 𝑢 is a strict prefix of 𝑣 (and that 𝑣 is

a strict extension of 𝑢). When 𝑢 ≤ 𝑣 , we write 𝑢−1𝑣 for the

unique string such that 𝑢 · (𝑢−1𝑣) = 𝑣 .
Definition 1 (Tokenization). Let 𝑟 = [𝑟0, 𝑟1, . . . , 𝑟𝜅−1] be a
nonempty sequence of regular expressions. We call each 𝑟𝛽
a (tokenization) rule and 𝑟 a tokenization grammar.
We write T = N for the set of all token ids. We define

token(𝑟 ) : Σ∗ → Option(Σ+ × T) as follows: token(𝑟 ) (𝑢) =
Some(𝑣, 𝛽), where 𝑣 is the longest nonempty prefix of 𝑢 that

matches some token regex and 𝛽 ∈ {0, . . . , 𝜅 − 1} is the least
index such that 𝑣 ∈ L(𝑟𝛽 ). We prefer the rule with the least

index if there are several rules that match the longest token.

We also define tokens(𝑟 ) : Σ∗ → List(Σ+ × T) as follows:
tokens(𝑟 ) (𝑢) = [ ], if token(𝑟 ) (𝑢) = None

tokens(𝑟 ) (𝑢) = [(𝑣, 𝛽)] · tokens(𝑟 ) (𝑣−1𝑢),
if token(𝑟 ) (𝑢) = Some(𝑣, 𝛽), where 𝑣−1𝑢 is the result of

removing the prefix 𝑣 from 𝑢.

The tokenization problem is the following: Given a tok-

enization grammar 𝑟 and a string𝑤 ∈ Σ∗ as input, compute

the list tokens(𝑟 ) (𝑤). For a fixed tokenization grammar 𝑟 , the

𝑟 -tokenization problem is the following: Given an input string

𝑤 ∈ Σ∗ as input, compute the list of tokens tokens(𝑟 ) (𝑤).
Example 2 (Tokenization). Consider the tokenization

grammar 𝑟 = [𝑎, 𝑏𝑎∗, 𝑐 [𝑎𝑏]∗] and the text𝑤 = 𝑎𝑏𝑎𝑎𝑏𝑎𝑐𝑎𝑏𝑎𝑎.

Then, token(𝑟 ) (𝑤) = Some(𝑎, 0) because the string𝑎matches

the regular expression 𝑎, and no other strings starting at the

beginning of𝑤 match any of the three rules. Then, we notice

that token(𝑟 ) (𝑤 [1..]) = Some(𝑏𝑎𝑎, 1), token(𝑟 ) (𝑤 [4..]) =
Some(𝑏𝑎, 1). Finally, token(𝑟 ) (𝑤 [6..]) = Some(𝑐𝑎𝑏𝑎𝑎, 2) be-
cause the entire remaining part of the string can be matched

for the regex 𝑐 [𝑎𝑏]∗, which is the longest match possible.

So, tokens(𝑟 ) (𝑤) = [(𝑎, 0), (𝑏𝑎𝑎, 1), (𝑏𝑎, 1), (𝑐𝑎𝑏𝑎𝑎, 2)]. The
entire input string is tokenized.

Let 𝑟 = [𝑟0, 𝑟1, . . . , 𝑟𝜅−1] be a tokenization grammar. We

sometimes represent 𝑟 as a single regular expression 𝑟0 | 𝑟1 |
· · · | 𝑟𝜅−1, where the top-level operator is 𝜅-ary nondeter-

ministic choice. E.g., the grammar [ a , a*b , [ab]*[^ab] ] with
three token rules is represented as the regex a|a*b|[ab]*[^ab] .

Definition 3 (Tokenization DFA). A DFA over the alpha-

bet Σ is a tuple A = (𝑄, 𝛿, 𝑞init, 𝐹 ), where 𝑄 is the finite set

of states, 𝛿 : 𝑄 × Σ→ 𝑄 is the transition function, 𝑞init ∈ 𝑄
is the initial state, and 𝐹 ⊆ 𝑄 is the set of final states.

Let 𝑝, 𝑞 ∈ 𝑄 . If 𝑞 = 𝛿 (𝑝, 𝑎), then we write 𝑝 →𝑎 𝑞. We

define the function 𝛿 : 𝑄 × Σ∗ → 𝑄 as follows: 𝛿 (𝑞, 𝜀) = 𝑞
and 𝛿 (𝑞,𝑢𝑎) = 𝛿 (𝛿 (𝑞,𝑢), 𝑎) for 𝑢 ∈ Σ∗ and 𝑎 ∈ Σ. We also
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Figure 1.DFAs for the grammars [0-9]|[ ] and [0-9]+|[ ]+ .

define 𝛿 : Σ∗ → 𝑄 as 𝛿 (𝑢) = 𝛿 (𝑞init, 𝑢). For a string 𝑢 ∈ Σ∗,
the notation 𝑝 →𝑢 𝑞 indicates that 𝛿 (𝑝,𝑢) = 𝑞.

A tokenization DFA is equipped with a function Λ : 𝐹 → T,
where Λ(𝑞) is the preferred token id for a final state 𝑞 ∈ 𝐹 .

For a state 𝑞 of a DFA, we say that 𝑞 is a reject or failure
state if it cannot reach a final state. During DFA execution,

reaching a reject/failure state means that no extension of the

input string can lead to acceptance.

Example 4. Fig. 1 (left) shows the tokenization DFA for the

grammar [0-9]|[ ] . Throughout this paper, the states of the

automata will be colored based on their associated grammar

rule. In this example, state 2 corresponds to the rule [] and

is assigned a dark blue color, while state 3 corresponds to the

rule [0-9] and is assigned a lighter blue color. State 1 is the

reject state and is assigned an orange color. The starting state

0 is not associated with any grammar rule and is uncolored.

From the initial state 0, if we receive a character that is

neither a digit nor a space, then the automaton reaches the

rejecting state 1 since it is impossible to form a token with

the received character. A space character leads to the final

state 2, which corresponds to the rule [ ] . From 2, receiving

any character will cause a transition to the rejecting state 1.

Similarly, receiving a digit at the initial state 0 leads to the

final state 3, which corresponds to the rule [0-9] .

Example 5. We consider the grammar [0-9]+|[ ]+ . The

tokenization DFA for this grammar is shown in Fig. 1 (right).

This is similar to the previous example. However, from state

2, we have a self-loop labeledwith the space character, which

reflects the repetition operator + in the rule [0-9]+ . However,

as before, upon receiving a non-space character in state 2,

the automaton will reach the rejecting state 1. A similar

change is also seen in state 3.

Tokenization in the Streaming Model. In the stream-

ing model, the input is a potentially unbounded sequence of

items that are revealed gradually during the computation in-

stead of becoming available all at once at the beginning. Each

input item is read only once as it arrives. While we can store

input items seen in the past, storing the entire stream using

𝑂 (𝑛) space (where 𝑛 is the size of the input stream) is highly

undesirable. Moreover, in streaming tokenization, we would

like to emit each token as early as possible as we consume

the input stream. However, this is not easy according to the

maximal-munch semantics where we prefer longer tokens;

it is possible that the algorithm “waits” indefinitely without
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an output in search of a longer token. In Lemma 6 below, we

prove a space lower bound for any generic streaming tok-

enization algorithm and demonstrate the inherent difficulty

of the tokenization problem in the streaming model.

Lemma 6 (Space Lower Bound). There is a tokenization
grammar 𝑟 for which the streaming tokenization problem re-

quires Ω(𝑛) space, where 𝑛 is the length of the input stream.

Proof. Consider the three-letter alphabet Σ = {𝑎, 𝑏, 𝑐} and
the tokenization grammar 𝑟 = [𝑎, 𝑏, (𝑎 | 𝑏)∗𝑐]. We focus

on streams that consist of only 𝑎’s and 𝑏’s. In this case, the

algorithm cannot emit any output until the end-of-stream

symbol is encountered because the rule (𝑎 | 𝑏)∗𝑐 will match

if the final letter is 𝑐 . So, the algorithm has to store the entire

stream, in order to correctly produce the output in the case

when the stream ends without the letter 𝑐 . □

Specifying Tokenizers. For our formulation of the tok-

enization problem, we chose to specify tokenizers as lists

of rules that are regular expressions. Alternatively, tokeniz-

ers could be specified using DFAs or NFAs. Our syntax of

regexes uses only the classical constructs (choice, concate-

nation, and Kleene star). Regexes used in practice often use

constructs that make them more succinct (e.g., bounded rep-

etition [25, 26] and lookaround assertions [8, 31]).

3 Token Neighbor Distance
This section starts by introducing novel semantic concepts

that capture the challenges in efficient streaming tokeniza-

tion. In particular, the notion of maximum token neighbor
distance tells us how many more input characters we need

to read in order to confirm whether a token is maximal or

not. Since this is semantically defined (in particular, without

reference to a specific tokenization algorithm), it captures

an aspect that is inherent in the tokenization grammar. The

concepts introduced in this section are used in our static

analysis of §4, which in turn enables our efficient streaming

tokenization algorithms of §5.

In §3.2, we note that this semantic notion also tells us some-

thing valuable about the standard backtracking tokenization

algorithm used by many popular lexer-generator tools such

as flex [47]. It gives us a bound on the amount of backtracking

that the algorithm performs, which in turn places a bound on

the running time. In particular, Lemma 12 states that if the

maximum token neighbor distance is bounded by 𝑘 , then the

standard backtracking algorithm has running time 𝑂 (𝑘 · 𝑛)
(in general, the worst-case time complexity is 𝑂 (𝑛2)).

3.1 Token Neighbor Distance
Let 𝑆 ⊆ N be a subset of natural numbers. A number𝑀 ∈ N
is said to be an upper bound of 𝑆 if𝑛 ≤ 𝑀 for every𝑛 ∈ 𝑆 . The
subset 𝑆 is called bounded if it has some upper bound. It is

called unbounded if it is not bounded. That is, 𝑆 is unbounded
iff for every𝑀 ∈ N there exists some 𝑛 ∈ N such that 𝑛 > 𝑀 .

Definition 7 (Token Neighbor Distance). Let 𝐿 ⊆ Σ∗. We

will define the token neighbor relation↣ ⊆ Σ∗ × Σ∗ w.r.t. the
language 𝐿. We define 𝑢 ↣ 𝑣 iff the following hold:

1. both 𝑢 and 𝑣 belong to 𝐿 and are nonempty,

2. 𝑢 ≤ 𝑣 (i.e., 𝑢 is a prefix of 𝑣), and

3. 𝑤 ∉ 𝐿 for every 𝑤 with 𝑢 < 𝑤 < 𝑣 (i.e., for every 𝑤

that is a strict extension of 𝑢 and a strict prefix of 𝑣).

A pair (𝑢, 𝑣) ∈↣ is called a token neighbor pair. We also say

that 𝑢, 𝑣 are neighboring tokens, and we define the distance
from 𝑢 to 𝑣 to be the length of 𝑢−1𝑣 . That is, we define

TkDist(𝑢, 𝑣) = |𝑢−1𝑣 |
for 𝑢, 𝑣 with 𝑢 ↣ 𝑣 . The string 𝑢−1𝑣 is called the token
increment from 𝑢 to 𝑣 . We also define

TkDist(𝐿) = supDSet(𝐿), where
DSet(𝐿) = {TkDist(𝑢, 𝑣) | 𝑢 ↣ 𝑣} and

sup is the supremum operator. In particular, the definition

says that TkDist(𝐿) = ∞ when the set DSet(𝐿) of token
neighbor distances is unbounded.We call TkDist(𝐿) themax-
imum token neighbor distance for 𝐿.

Intuition: 𝑢 ↣ 𝑣 means that 𝑢, 𝑣 are tokens (w.r.t. the

language 𝐿) so that 𝑢 is a prefix of 𝑣 and there is no other

token that is strictly between them (w.r.t. the prefix order).

Abbreviations: We sometimes write TND as abbreviation

for “token neighbor distance”. We also write max-TND to

abbreviate “maximum TND”.

Definition 8 (Maximum TND). Let 𝑟 be a tokenization

grammar. We define TkDist(𝑟 ) = TkDist(L(𝑟 )).

Example 9. In the table below, we list some tokenization

grammars and their maximum token neighbor distance.

grammar 𝑟 TkDist(𝑟 )
1. [0-9]|[ ] 0

2. [0-9]+|[ ]+ 1

3. [0-9]+(\.[0-9]+)?|[ \.] 2

4. [0-9]+([eE][+-]?[0-9]+)?|[ ]+ 3

5. [0-9]*0|[ ]+ ∞
6. a|a*b|[ab]*[^ab] ∞

For the first grammar, every token has length 1. This

means that 𝑢 ↣ 𝑣 implies 𝑢 = 𝑣 for all 𝑢, 𝑣 . It follows that

the max-TND is 0.

For the second grammar, the token neighbors (𝑢, 𝑣) can
be of only two forms: (i) 𝑢 matches [0-9]+ and 𝑣 = 𝑢𝑥 with

𝑥 being a decimal digit, or (ii) 𝑢 matches [ ]+ and 𝑣 = 𝑢𝑥

with 𝑥 being a space symbol. So, the max-TND is 1.

For the third grammar, we observe that the token neigh-

bors (𝑢, 𝑣) with the longest increment 𝑢−1𝑣 are of the fol-

lowing form: 𝑢 matches [0-9]+ and 𝑣 = 𝑢 .𝑥 with 𝑥 being a

decimal digit (e.g., 9 ↣ 9.9 ). So, the max-TND is 2.

For the fourth grammar, the token neighbors (𝑢, 𝑣) with
the longest increment satisfy: 𝑢 matches [0-9]+ and 𝑣 =
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// Input: grammar 𝑟 = [𝑟0, . . . , 𝑟𝜅−1 ] and stream text
1 Function Tokenize(𝑟 : List(Reg(Σ) ) , text : Stream(Σ)):
2 A ← Tokenization DFA for 𝑟

3 N startP ← 0 // start position for token

4 while startP < text .len do // pass with backtracking
5 Option(N × T) tk ← None // token found

6 S 𝑞 ← initial state of A // current DFA state

7 N pos← startP // current position in stream

8 while pos < text .len do // left-to-right pass
// 𝛿: transition function of A

9 𝑞 ← 𝛿 (𝑞, text [pos] )
10 pos← pos + 1 // move to the next symbol

11 if 𝑞 is final then
// Λ(𝑞) is the preferred token id

12 tk ← Some(pos − startP,Λ(𝑞) )
13 if 𝑞 is a failure state then break
14 if let Some(ℓ, 𝛽 ) = tk then

// emit token to the output stream

15 emit (text [startP ..startP + ℓ ], 𝛽 )
16 startP ← startP + ℓ // continue after token

17 else break

Figure 2. The standard DFA-based backtracking algorithm

for tokenization (see flex [47]).

𝑢𝑥𝑦𝑧, where 𝑥 ∈ { e , E }, 𝑦 ∈ { + , - }, and 𝑧 is a decimal digit.

So, the max-TND is 3.

For the fifth grammar, note that 0 ↣ 0 1 𝑖 0 for every

𝑖 ≥ 0. It follows that the max-TND is∞.
For the sixth grammar, we observe that a ↣ a a 𝑖 b for

every 𝑖 ≥ 0. So, the max-TND is∞.

Lemma10. Let𝐿 ⊆ Σ∗ and𝑘 ∈ N.We have that TkDist(𝐿) >
𝑘 iff there exist 𝑢, 𝑣 such that the following hold: (1) 𝑢 ↣ 𝑣

(i.e., 𝑢 and 𝑣 are token neighbors w.r.t. 𝐿) and (2) |𝑢−1𝑣 | > 𝑘 .

Lemma 11 (Dichotomy). Let 𝐿 ⊆ Σ∗ be regular. Suppose
that 𝑚 is the number of states of the minimal DFA that

recognizes 𝐿. Then, TkDist(𝐿) = ∞ or TkDist(𝐿) ≤ 𝑚 + 1.

3.2 Bounding the Backtracking Distance
In this subsection, we briefly explore how the notion of token

neighbor distance may help us understand the performance

of the standard backtracking-based tokenization algorithm.

Fig. 2 shows the essence of this algorithm. The grammar is

an input argument for the procedure Tokenize. The outer

while loop (Line 4) performs one repetition for every token

that is identified. The variable startP keeps track of the start

position for the token that will be identified next. The inner

while loop (Line 8) reads the input symbols from left to right,

starting with position startP until the longest token for the

suffix text [startP ..] is found.
We say that the algorithm of Fig. 2 backtracks because the

index pos that is used to read from the input string text can
move backwards. This can happen when a maximal token

is confirmed, which can trigger the execution of Line 16

and then Line 7. These statements can result in pos being
decremented, which we refer to as “backtracking”.

The possibility of backtracking means that the Tokenize

algorithm of Fig. 2 can end up reading parts of the input

several times. This is a well-known source of inefficiency.

See, for example, [38]. In fact, the worst-case running time

of this algorithm is Θ(𝑛2), where 𝑛 is the length of the input

text, for some tokenization grammars.

Lemma 12 below captures our observation that, if the max-

imum token neighbor distance is bounded, then the standard

backtracking algorithm is guaranteed to run in linear time

despite the worst-case quadratic time complexity in general.

Lemma 12. Let 𝑟 be a tokenization grammar. Suppose that

TkDist(𝑟 ) = 𝑘 < ∞. Then, the worst-case time complexity

of the algorithm Tokenize(𝑟 ) (i.e., for fixed grammar 𝑟 ) is

𝑂 (𝑘 · 𝑛), where 𝑛 is the length of the input text.

The proof of Lemma 12 establishes that TkDist(𝑟 ) ≤ 𝑘
implies that the algorithm of Fig. 2 backtracks by at most 𝑘

positions on the input string. In particular, this means that

TkDist(𝑟 ) ≤ ∞ implies a uniform bound on the amount of

backtracking, which can be used to prove the𝑂 (𝑘 · 𝑛) upper
bound for the running time of the algorithm.

4 Static Analysis
Before we present our static analysis that computes the max-

imum token neighbor distance, as defined in Section 3, we

consider the complexity of the problem in Theorem 13 below.

Theorem13 (Complexity LowerBound). Let TokenDist1

be the decision problem of checking whether a tokenization

grammar 𝑟 satisfies TkDist(𝑟 ) ≤ 1 (i.e., it has max-TND at

most 1). TokenDist1 is PSPACE-hard.

Proof. We describe a reduction 𝑓 from the universality prob-

lem for regular expressions to the problem TokenDist1. Let

𝑟 be a regular expression over Σ. We will define the regu-

lar expression 𝑓 (𝑟 ) over the alphabet Γ = Σ ∪ {□}. For the
definition of 𝑓 (𝑟 ) we distinguish cases, based on whether 𝑟

accepts the empty string 𝜀 or not.

(i) Case 𝜀 ∉ L(𝑟 ): Define 𝑓 (𝑟 ) = □|□□□.
(ii) Case 𝜀 ∈ L(𝑟 ): Define 𝑓 (𝑟 ) to be the regex that accepts

a string𝑤 if and only if (1)𝑤 is the empty string, or (2)

𝑤 ends with □, or (3)𝑤 ends with a symbol in Σ and𝑤 |Σ
(remove all □ occurrences) is in L(𝑟 ). The construction
of 𝑓 (𝑟 ) can be done with a straightforward recursive

algorithm that replaces each symbol 𝑎 in 𝑟 by □∗𝑎□∗.
The intuition for the construction is that the symbol □
triggers acceptance, but in its absence we consider the

original language (and ignore all □ occurrences).

We will show now that 𝑟 is universal iff 𝑓 (𝑟 ) ∈ TokenDist1.

First, suppose that 𝑟 is universal. Then, case (ii) applies and

𝑓 (𝑟 ) is universal. Therefore, 𝑓 (𝑟 ) has max-TND at most 1.

Suppose now that 𝑟 is not universal, which means that there
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// Input: tokenization grammar 𝑟 = [𝑟0, . . . , 𝑟𝜅−1 ]
1 Function AnalysisMaxTND(𝑟 : List(Reg(Σ) )):
2 A ← Tokenization DFA for 𝑟

3 𝑆 ← {𝑞 | 𝑞 is final and 𝑞 = 𝛿 (𝑢 ) for some 𝑢 ∈ Σ+}
4 CoAcc ← {𝑞 | 𝑞 is co-accessible, i.e., can reach a final state}
5 dist ← 0 // (tentative) max-TND

6 while dist < |A | + 2 do
7 𝑇 ← {𝛿 (𝑞, 𝑎) | 𝑞 ∈ 𝑆 and 𝑎 ∈ Σ}
8 if 𝑇 ∩ CoAcc = ∅ then

// 𝑇 contains no co-accessible state

// maximum token neighbor distance = dist
9 return dist

10 𝑆 ← {𝑞 ∈ 𝑇 | 𝑞 is not final}
11 dist ← dist + 1

12 return∞

Figure 3. Static analysis: Computing the maximum token

neighbor distance TkDist(𝑟 ) for a tokenization grammar 𝑟 .

exists a string𝑥 ∈ Σ∗ such that𝑥 ∉ L(𝑟 ). If𝑥 = 𝜀, then 𝑓 (𝑟 ) =
□|□□□, which has max-TND 2. So, 𝑓 (𝑟 ) ∉ TokenDist1. It

remains to consider the case where 𝑥 is non-empty, that is,

𝑥 = 𝑦𝑎 is in Σ+. We claim that 𝑓 (𝑟 ) has max-TND at least 2.

Here is the witness: (1a) 𝑢 = 𝑦□ belongs to L(𝑓 (𝑟 )) because
it ends with □, (1b) 𝑣 = 𝑦□𝑎□ belongs to L(𝑓 (𝑟 )) because
it ends with □, (2) 𝑢 ≤ 𝑣 , and (3) 𝑦□𝑎 does not belong to

L(𝑓 (𝑟 )) because (𝑦□𝑎) |Σ = 𝑦𝑎 ∉ L(𝑟 ). Since |𝑢−1𝑣 | = 2, we

conclude that 𝑟 has max-TND at least 2. □

With Theorem 13 we have established that the decision

problem TokenDist1 is PSPACE-hard. It follows that com-

puting the max-TND, which is a more general problem, is

computationally hard. We will proceed now to describe a

DFA-based algorithm for computing the max-TND of a tok-

enization grammar.

Let A be a DFA. A state 𝑞 is accessible if it is reachable
from the initial state of A. We say that 𝑞 is co-accessible if
there is a path from 𝑞 to some final state of A.

Fig. 3 shows our proposed algorithm to compute TkDist(𝑟 )
for a tokenization grammar 𝑟 . Let 𝐿 = L(𝑟 ) and A be the

tokenizationDFA for 𝑟 . Themain idea behind the algorithm is

that it explores all paths in A that witness TkDist(𝐿) ≥ dist
for increasing values of dist, i.e., dist = 0, 1, . . . , |A| + 2. We

will continue to explain this idea.

Let 𝑘 ∈ N. Recall from Lemma 10 that TkDist(𝐿) ≥ 𝑘 + 1

iff there exist strings 𝑢, 𝑣 such that 𝑢 ↣ 𝑣 and |𝑢−1𝑣 | ≥ 𝑘 + 1.

This means that 𝑣 is of the form 𝑣 = 𝑢 · 𝑎1𝑎2 . . . 𝑎𝑘𝑎𝑘+1 · 𝑤 ,
where 𝑤 ∈ Σ∗ and 𝑎𝑖 ∈ Σ for every 𝑖 . The condition 𝑢 ↣ 𝑣

says that 𝑢 ∈ 𝐿, 𝑣 ∈ 𝐿, and 𝑢𝑎1 . . . 𝑎𝑖 ∉ 𝐿 for every 𝑖 ∈
{1, 2, . . . , 𝑘}. So, TkDist(𝐿) ≥ 𝑘 + 1 iff there exists a path

𝑞init
𝑢∈Σ+−−−−→ 𝑞

𝑎1−→ 𝑞1

𝑎2−→ 𝑞2

𝑎3−→ · · · 𝑎𝑘−−→ 𝑞𝑘
𝑎𝑘+1−−−→ 𝑞𝑘+1

in A (where 𝑞init is the initial state of A) such that 𝑞 is

final, every 𝑞𝑖 is non-final for 𝑖 = 1, 2, . . . , 𝑘 , and 𝑞𝑘+1 is co-
accessible.

Theorem 14 (Complexity Upper Bound). Computing the

maximum token neighbor distance for tokenization gram-

mars can be done in (deterministic) polynomial space.

Proof. First, consider the problem of checking TkDist(𝑟 ) ≥
𝑘 + 1. Based on the earlier characterization in terms of the

existence of a path in the tokenization DFA, a nondeter-

ministic polynomial-space reachability algorithm (over the

potentially exponentially large DFA) can determine the ex-

istence of such a path. By Savitch’s theorem [41], there is a

deterministic polynomial-space algorithm for this problem.

Checking that TkDist(𝑟 ) = 𝑘 + 1 is the same as checking

that TkDist(𝑟 ) ≥ 𝑘 + 1 and TkDist(𝑟 ) ≱ 𝑘 + 2. So, this can

also be done in polynomial space. Finally, using Lemma 11

we see that computing TkDist(𝑟 ) can be done in polynomial

space. □

Theorem 15 (Correctness of Static Analysis). Let 𝑟 be a

tokenization grammar. The algorithm of Fig. 3 computes the

maximum token neighbor distance TkDist(𝑟 ).

Proof. Let 𝐿 = L(𝑟 ) be the language of the tokenization

grammar and A = (𝑄, 𝛿, 𝑞init, 𝐹 ) be the tokenization DFA

for 𝑟 . For every 𝑢 ∈ Σ∗, 𝑢 ∈ 𝐿 iff 𝛿 (𝑢) ∈ 𝐹 .
The correctness of the algorithm hinges on the following

loop invariant for the main while loop (starting at Line 6):

1. TkDist(𝐿) ≥ dist
2. dist ≤ |A| + 2

3. 𝑆 contains a state 𝑞 iff there exist a token 𝑢 ∈ 𝐿 ∩ Σ+

and a string 𝑣 ∈ Σdist
such that 𝛿 (𝑢𝑣) = 𝑞 and 𝑤 ∉ 𝐿

for every𝑤 with 𝑢 < 𝑤 ≤ 𝑢𝑣 .
First, we have to show that the loop invariant holds when

execution reaches the while loop. After Line 3 executes, 𝑆

contains a state 𝑞 iff there exists a token 𝑢 ∈ 𝐿 ∩ Σ+ such
that 𝛿 (𝑢) = 𝑞. Before entering the loop, we also have that

dist = 0. These two conditions imply Part (3) of the invariant

(choose 𝑣 = 𝜀 and notice that the last part holds vacuously

because there is no𝑤 with 𝑢 < 𝑤 ≤ 𝑢𝑣). Part (1) and Part (2)
of the invariant are easily seen to hold because dist = 0.

Now, we continue to establish that the body of the loop

preserves the loop invariant. After Line 7 executes, we have:

4. 𝑇 contains a state 𝑞 iff there exist a token 𝑢 ∈ 𝐿∩ Σ+, a
string 𝑣 ∈ Σdist

and a letter 𝑎 ∈ Σ such that 𝛿 (𝑢𝑣𝑎) = 𝑞
and𝑤 ∉ 𝐿 for every𝑤 with 𝑢 < 𝑤 ≤ 𝑢𝑣 .

We will focus now on the test “𝑇 ∩ CoAcc = ∅” that is per-
formed in the conditional starting at Line 8. First, we exam-

ine the case 𝑇 ∩ CoAcc ≠ ∅ where the test fails. This means

that there is a state 𝑞 ∈ 𝑇 ∩ CoAcc, i.e., 𝑞 ∈ 𝑇 and 𝑞 is co-

accessible. From 𝑞 ∈ 𝑇 and Property (4) we get that there

exist𝑢 ∈ 𝐿∩Σ+, 𝑣 ∈ Σdist
and 𝑎 ∈ Σ such that 𝛿 (𝑢𝑣𝑎) = 𝑞 and

𝑤 ∉ 𝐿 for every𝑤 with 𝑢 < 𝑤 ≤ 𝑢𝑣 . Since 𝑞 is co-accessible,

it follows that 𝛿 (𝑞, 𝑧) ∈ 𝐹 for some string 𝑧 ∈ Σ∗ of minimal

length (minimality here means that 𝛿 (𝑞, 𝑧′) ∉ 𝐹 for every

strict prefix 𝑧′ of 𝑧). So, 𝛿 (𝑢𝑣𝑎𝑧) = 𝛿 (𝛿 (𝑢𝑣𝑎), 𝑧) = 𝛿 (𝑞, 𝑧) ∈ 𝐹
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Example 16
dist 0 1 2 3

𝑆 2

3
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1
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𝑇 1
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1
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test ff ff ff tt

Example 17

dist 0 1 2 · · · 6 7

𝑆 2

3

1

4

1

4

· · · 1

4

return

∞

𝑇 1

2

3

4

1

3

4

1

3

4

· · · 1

3

4

test ff ff ff . . . ff

Figure 4. Execution traces of the static analysis algorithm.

and hence 𝑢𝑣𝑎𝑧 ∈ 𝐿. From all these facts, we obtain that

𝑢 ↣ 𝑢𝑣𝑎𝑧, i.e., 𝑢 and 𝑢𝑣𝑎𝑧 form a token neighbor pair. No-

tice that TkDist(𝑢,𝑢𝑣𝑎𝑧) = |𝑣𝑎𝑧 | ≥ dist + 1. We obtain that

5. TkDist(𝐿) ≥ dist + 1.

If the test of the conditional succeeds, i.e.,𝑇 ∩ CoAcc = ∅ we
obtain that it cannot be that TkDist(𝐿) ≥ dist + 1. Therefore,

TkDist(𝐿) ≤ dist. Using Part (1) of the invariant, we conclude
that TkDist(𝐿) = dist and therefore the algorithm correctly

returns with the value dist at Line 9.
We will now consider the execution after the conditional,

that is, when Line 10 is reached. The variable 𝑆 is updated to

include those states of 𝑇 that are non-final. We thus obtain:

6. 𝑆 contains a state 𝑞 iff there exist a token 𝑢 ∈ 𝐿 ∩ Σ+

and a string 𝑣𝑎 ∈ Σdist+1
such that 𝛿 (𝑢𝑣𝑎) = 𝑞 and

𝑤 ∉ 𝐿 for every𝑤 with 𝑢 < 𝑤 ≤ 𝑢𝑣𝑎.

The next statement increments dist by 1, and we conclude

that the loop invariant holds at end of the body of the loop.

After themain loop terminates, we know that the invariant

holds. Since the loop guard has failed, we also know that

¬(dist < |A| + 2), i.e., dist ≥ |A| + 2. Using Part (2) of the

invariant, we obtain that dist = |A| + 2. Then, using Part (1)

of the invariant, we see that TkDist(𝐿) ≥ |A| + 2. Lemma 11

implies that it must be TkDist(𝐿) = ∞. So, the algorithm

correctly returns∞ at the end. □

Complexity of Static Analysis. Let𝑀 be the size |A| of
the DFA for the tokenization grammar. The running time

of the analysis is dominated by the execution of the while

loop. First, notice that the loop executes 𝑂 (𝑀) times, where

𝑀 is the number of DFA states. Every repetition of the loop

involves computing the set of successors of 𝑆 and performing

the check 𝑇 ∩ CoAcc. Using the appropriate data structures
to represent 𝑆 , 𝑇 , and CoAcc (e.g., CoAcc can be kept as a

Boolean array with 𝑀 entries), the amount of work per-

formed in a loop repetition is 𝑂 (𝑀). So, the running time of

the analysis is 𝑂 (𝑀2).

Example 16. Consider [0-9]+([eE][+-]?[0-9]+)?|[ ]+ , which

has max-TND 3 (see Example 9). Below, we show the tok-

enization DFA, where 𝜎 = [^0-9eE] and 𝜏 = [^0-9+-] .

0 1

2

3 4

5

6

[^0-9 ]

[ ]

[0-9]

.

[^ ]

[ ]

𝜎[0-9] [eE]
[+-]𝜏

[0-9]
[^0-9]

[0-9]
[^0-9]

[0-9]

The execution trace of the static analysis algorithm (Fig. 3)

for this grammar is shown in Fig. 4 (left). The row labeled

with “test” refers to the condition “𝑇 ∩ CoAcc = ∅” that is
checked by the algorithm. Note that the set of co-accessible

states of the automaton is CoAcc = {0, 2, 3, 4, 5, 6}. In line 3,

we initialize 𝑆 to all reachable final states, which is {2, 3,

6}. At the first iteration of the loop, we compute 𝑇 to be the

set of all successors of states in 𝑆 . The successors of state

2 are 2 and 1; the successors of state 3 are 3, 1, and 4;

and the successors of state 6 are 6 and 1. So, 𝑇 is set to be

{1, 2, 3, 4, 6}. Since𝑇 intersects CoAcc, execution continues

to line 10. At this point, 𝑆 is updated to contain the non-final

states of 𝑇 , i.e., 𝑆 = {1, 4}. Moreover, dist is updated to 1.

The loop execution continues in the same manner until

dist becomes 3, in which case the only state left in 𝑆 is the

rejecting state 1. The only successor of 1 is 1, so 𝑇 also

becomes {1}. Now, since 𝑇 ∩ CoAcc = ∅, we return dist = 3.

The path witnessing TkDist(𝐿) ≥ 3 is

0→ [0-9]
3 → [eE]

4→ [+-]
5→ [0-9]

6 .

The transitions are annotated with character classes 𝜎 , be-

cause for any letter choice we get a witnessing path.

Example 17. Consider [0-9]*0|[ ]+ , which hasmax-TND∞
(Example 9). We show the tokenization DFA for the grammar:

0 1

2

3

4

[^0-9 ]
.

[ ]

0
[1-9]

[^ ]

[ ]

[^0-9]
0

[1-9]
0

[1-9]

[^0-9]

The execution trace of the static analysis algorithm (Fig. 3)

for this grammar is shown in Fig. 4 (right). Initially, 𝑆 =

{2, 3} consists of all reachable final states. The successors
are 𝑇 = {1, 2, 3, 4}. Since CoAcc = {0, 2, 3, 4}, we have

𝑇 ∩ CoAcc ≠ ∅.
For dist = 1, we get 𝑆 = {1, 4} by filtering out the final

states in 𝑇 . Taking the successors of each state in 𝑆 , we

update 𝑇 = {1, 3, 4}, which has a nonempty intersection

with CoAcc. Then, we notice that the execution stabilizes in

the sense that 𝑆 and 𝑇 no longer change. However, as soon

as dist becomes 7, the loop guard at line 6 of Fig. 3 fails, and

we jump to line 12 to return∞.
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// Input: grammar 𝑟 with TkDist(𝑟 ) ≤ 1 and stream text
1 Function Tokenize(𝑟 : List(Reg(Σ) ) , text : Stream(Σ)):
2 A ← tokenization DFA for 𝑟

3 𝑇 ← token-extension table for A
4 N startP ← 0 // start position for token

5 N pos← 0 // current position in stream

6 S 𝑞 ← initial state of A // current DFA state

7 while true do // left-to-right pass, no backtracking
// 𝛿A: transition function of A

8 𝑞 ← 𝛿A (𝑞, text [pos] )
9 pos← pos + 1 // move position to the next symbol

10 if 𝑇 [𝑞 ] [text [pos] ] then // check for maximal token
// Λ(𝑞) is the preferred token id

11 emit (text [startP ..pos],Λ(𝑞) )
12 startP ← pos // start position for next token

13 𝑞 ← initial state of A

Figure 5. Tokenization for max-TND at most 1.

We discussed in Example 9 that this grammar has max-

TND ∞ because 0 ↣ 0 1 𝑖 0 for every 𝑖 ≥ 0. In fact, these

tokens correspond to paths in the automaton of the following

form: 0→ 0
3 → 1

4→ 1
4→ 1 · · · → 1

4→ 1
4→ 0

3.

5 Efficient Streaming Tokenization
The previous section has presented a static analysis that

computes the maximum token distance of an arbitrary tok-

enization grammar. In this section, we propose an efficient

streaming tokenization algorithm that is applicable to gram-

mars with boundedmax-TND.We call our algorithm Stream-
Tok. It has time complexity 𝑂 (𝑛), where 𝑛 is the length of

the input stream. We will start by examining the simple case

of max-TND 1. Then, we will delve into the more general

case where the max-TND is any number 𝐾 < ∞.

5.1 Streaming Algorithm for Token Distance 1
Now, we study the case where the maximum token neighbor

distance is 1. E.g., the grammar [0-9]+|[ ]+ has max-TND 1.

Let 𝑟 be a tokenization grammar with TkDist(𝑟 ) = 1 and

A be its tokenization DFA. Suppose that the execution of

A over the input string reaches a final state 𝑞. There are

two possibilities for the matched token 𝑢: (1) it is a maximal

token, or (2) its extension 𝑢𝑎 with the next symbol 𝑎 is also a

token, which means that 𝑢 is not maximal. In order to make

this distinction, we pre-compute a table 𝑇 , which is indexed

by the states of A and the symbols of the alphabet. We call

𝑇 the token-extension table forA. For a state 𝑞 ofA and a

symbol 𝑎 ∈ Σ, we define 𝑇 [𝑞] [𝑎] = true iff (1) 𝑞 is final and

(2) 𝛿 (𝑞, 𝑎) is not final.
The algorithm of Fig. 5 performs a simulation of the execu-

tion of the tokenization DFA A. The difference here is that

we check in line 10 whether we have identified a token (i.e.,

the current state is final) that is maximal (i.e., it cannot be

extended to a longer one). When a maximal token is found,

the algorithm emits a token to the output stream. The output

pair includes both the substring that constitutes the token,

as well as its token identifier. The algorithm then proceeds

to restartA from its initial state in order to tokenize the rest

of the input stream.

Example 18. Consider the grammar [0-9]+|[ ]+ , which we

have seen in Example 5 and Fig. 1. It has max-TND 1, and we

can apply the algorithm of Fig. 5. For ease of presentation,

we consider character classes for the token-extension table

instead of individual characters. The token-extension table

𝑇 has two true entries: 𝑇 [2] [ [^ ] ] and 𝑇 [3] [ [^0-9] ]. We

have 𝑇 [2] [ [^ ] ] = true because, once we have a token

matching the rule [ ]+ and are therefore in the final state

2, seeing a non-space character ( [^ ] ) next ensures that the

token cannot be extended and should be emitted.

To illustrate the execution of the algorithm in Fig. 5, con-

sider the input text 12␣ (as the prefix of some input stream).

When the tokenization DFA (shown in Fig. 1) reads 1 and

reaches the final state 3, we look up the table entry𝑇 [3] [ 2 ],
which is false. Thus, we know that the token 1 is not max-

imal. After reading the next character 2 , the current DFA

state remains 3. The table entry 𝑇 [3] [ ␣ ] is true, which
means that the token 12 found so far is maximal and should

be emitted.

The algorithm of Fig. 5 has the argument text, which is the
input stream of alphabet symbols. Even though our program-

ming syntax allows random access into text, the algorithm
only performs a left-to-right pass over text (pos gets incre-
mented at every step). So, our syntax can be easily translated

into a more pure syntax for streaming algorithms.

The main work that the algorithm performs are table

lookups for the transition (𝛿A ) and for checking whether we
have a maximal token (𝑇 ). So, we perform 𝑂 (1) work per in-

put symbol. It follows that the algorithm has time complexity

𝑂 (𝑛), where 𝑛 is the length of the input stream.

5.2 StreamTok: General Streaming Tokenization
Let 𝑟 be a tokenization grammar. We will now describe a

streaming tokenization algorithm, which we call StreamTok,
for the case where TkDist(𝑟 ) = 𝐾 < ∞. The main idea is that

determining whether an identified token is maximal requires

information about the 𝐾 characters that lie ahead.

Let A be the tokenization DFA for 𝑟 . A token-extension
path 𝜋 in A is a sequence

𝑞
𝑎1−→ 𝑞1

𝑎2−→ 𝑞2

𝑎3−→ · · · 𝑎𝑘−1−−−→ 𝑞𝑘−1

𝑎𝑘−−→ 𝑞𝑘

where 𝑘 ≥ 1, 𝑞 and 𝑞𝑘 are final, and every 𝑞𝑖 with 𝑖 =

1, . . . , 𝑘 − 1 is non-final. Our assumption TkDist(𝑟 ) = 𝐾 im-

plies that 𝑘 ≤ 𝐾 . We define fst(𝜋) = 𝑞 to be the first state of

the path 𝜋 and label(𝜋) = 𝑎1𝑎2 . . . 𝑎𝑘 to be the string that can

be read from the path. Let TePaths(A) be the set of all token-
extension paths inA. Let TeNFA(A) be the NFA that recog-

nizes the finite set of regular expressions {pad(label(𝜋)) |



Static Analysis for Efficient Streaming Tokenization ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

// Input: grammar 𝑟 with TkDist(𝑟 ) = 𝐾 < ∞ and stream text
1 Function Tokenize(𝑟 : List(Reg(Σ) ) , text : Stream(Σ)):
2 A ← tokenization DFA for 𝑟

3 B ← token-extension DFA for A
4 𝑇 ← token-maximality table for A and B
5 N startP ← 0 // start position for token

6 (S 𝑞, S 𝑆 ) ← (initial state of A, initial state of B)
7 for pos = 0, 1, . . . , 𝐾 − 1 do // traverse first window (size 𝐾)
8 𝑆 ← 𝛿B (𝑆, text [pos] ) // 𝛿B: transition function of B
9 N pos← 0 // start position for stream

10 while true do // left-to-right pass without backtracking
11 𝑆 ← 𝛿B (𝑆, text [pos +𝐾 ] ) // B is 𝐾 symbols ahead of A
12 𝑞 ← 𝛿A (𝑞, text [pos] ) // 𝛿A: transition function of A
13 pos← pos + 1 // move position to the next symbol

14 if 𝑇 [𝑞 ] [𝑆 ] then // check for maximal token
// Λ(𝑞) is the preferred token id

15 emit (text [startP ..pos],Λ(𝑞) )
16 startP ← pos // start position for the next token

17 𝑞 ← initial state of A

Figure 6. Streaming tokenization when TkDist(𝑟 ) = 𝐾 < ∞.

𝜋 ∈ TePaths(A)}, where pad(𝑎1𝑎2 . . . 𝑎𝑘 ) = 𝑎1𝑎2 . . . 𝑎𝑘 ·
Σ𝐾−𝑘 . The idea is that the pad function “pads” the string

𝑎1𝑎2 . . . 𝑎𝑘 with 𝐾 − 𝑘 character classes Σ (to accept any

character) so as to reach length exactly equal to 𝐾 . We call

TeNFA(A) the token-extension NFA for A. Every state 𝑠 of

TeNFA(A) is associatedwith a specific path𝜋 of TePaths(A),
and we define the label Λ(𝑠) = fst(𝜋), which records the first
state of the path. The token-extension DFA for A, denoted

by TeDFA(A), results from TeNFA(A) by using a modified

powerset construction that, informally, “restarts” the NFA

at every step. Every state 𝑆 of TeDFA(A) corresponds to a
subset of states of TeNFA(A).
Fig. 6 shows our streaming tokenization algorithm for

grammars with bounded max-TND, which uses the token-

extension DFA described above. The token-extension DFA

B = TeDFA(A) can be used to compute some information

about the 𝐾 characters that lie ahead of the current posi-

tion for tokenization. This can be easily implemented by

executing the tokenization automaton A with a delay of 𝐾

characters relative to B (see lines 11–12 of Fig. 6). Then, we

can use the current states of A and B to check whether a

maximal token has been found. To elaborate on this, sup-

pose that the execution of A ends up at some final state 𝑞,

which means that we have just found a token 𝑢 (i.e., sub-

string that matches the grammar). The token 𝑢 is maximal

iff the next few characters (at most 𝐾 of them) cannot extend

it to a longer token. This can be checked by considering the

current state 𝑆 of B. Notice that B is exactly 𝐾 characters

ahead of A, so it has already seen the characters that could

potentially result in an extension. There is an extension of 𝑢

iff the DFA state 𝑆 (“powerstate”) is final and contains some

NFA state 𝑠 such thatΛ(𝑠) = 𝑞. This condition says that there

is a token-extension path starting with 𝑞 that uses at most

𝐾 of the characters that follow.

Based on the observations of the previous paragraph, we

see that we can pre-compute a table 𝑇 that tells us whether

we have a maximal token based on the current state 𝑞 of

A and the current state 𝑆 of B. We call this the token-
maximality table (for A and B) and we define 𝑇 [𝑞] [𝑆] =
true iff (1) 𝑞 is final and (2) there exists no token-extension

NFA state 𝑠 ∈ 𝑆 such that 𝑠 is final and Λ(𝑠) = 𝑞. In particular,
line 14 of Fig. 6 performs this check: if 𝑇 [𝑞] [𝑆] is true, then
we know that the token is maximal and we emit it.

Note: since the token extension paths may share vertices,

the token-extension paths are stored in a compact data struc-

ture in our implementation, which takes advantage of shar-

ing. In fact, this data structure can be directly used to build

the TeDFA without an explicit enumeration of the paths.

Example 19. Consider the grammar [0-9]+(\.[0-9]+)?|[ \.] .

Its tokenization DFA A is shown below. We know from Ex-

ample 9 that this grammar has max-TND 2.

0 1

2

3 4 5

[^0-9 \.]

.

[ \.]

[0-9]

.

[^0-9\.][0-9]

\. [0-9]

[^0-9] [^0-9]

[0-9]

Observe that TePaths(A) contains the following three paths:

3

[0-9]
−−−−−→ 3 3

\.
−−→ 4

[0-9]
−−−−−→ 5 5

[0-9]
−−−−−→ 5

We construct TeNFA(A) as shown below.We pad the shorter

paths with the character class that accepts any character

(denoted . in PCRE notation). Observe the close correspon-

dence between TeNFA(A) and TePaths(A). We color each

state in the token-extension NFA based on the first state of

each token-extension path, in order to reflect the label of

each state in TeNFA(A). In particular, states 𝑠1, 𝑠4, 𝑠7, 𝑠2, 𝑠5,

and 𝑠8 are labeled with state 3 of the original tokenization

DFA A; and states 𝑠3, 𝑠6, 𝑠9 are labeled with state 5 of A.

𝑠1 𝑠4 𝑠7

[0-9] .
𝑠2 𝑠5 𝑠8

\. [0-9]
𝑠3 𝑠6 𝑠9

[0-9] .

Applying a modified powerset construction to TeNFA(A)
above, we obtain TeDFA(A) as shown below. In particular,

the token-extension DFA has the states 𝑆1, . . . , 𝑆6. We view

each of these DFA states as a set of NFA states in TeNFA(A).
In particular, 𝑆1 = 𝐼 = {𝑠1, 𝑠2, 𝑠3} is the set of initial states of
TeNFA(A). We also have 𝑆2 = {𝑠4, 𝑠6} ∪ 𝐼 , 𝑆3 = {𝑠5} ∪ 𝐼 , 𝑆4 =

{𝑠4, 𝑠6, 𝑠7, 𝑠9} ∪ 𝐼 , 𝑆5 = {𝑠5, 𝑠7, 𝑠9} ∪ 𝐼 , and 𝑆6 = {𝑠4, 𝑠6, 𝑠8} ∪ 𝐼 .
Note that we take the union of each constructed subset with

𝐼 (i.e., the set of the initial states in TeNFA(A)) to simulate
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“restarting” the NFA at each step.

𝑆1 𝑆5

𝑆2

𝑆3 𝑆6

𝑆4

[0-9]

\.

\.

[0-9]

[0-9]
\.

\.

[0-9]

\.

[0-9]

\.

[0-9]

As a simple illustration of the algorithm in Fig. 6, consider

the input text 1.4.. (as the prefix of some input stream).

The first maximal token to be emitted is 1.4 . Note that dur-

ing execution, TeDFA(A) is two input characters ahead of

A because the max-TND is 𝐾 = 2. Thus, when A reads

the first character 1 and reaches a final state 3, the token-

extension DFA TeDFA(A) has seen 1.4 and reached state

𝑆6. We know that 𝑆6 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠6, 𝑠8}, where 𝑠8 is final

and is associated with state 3. This means that 𝑇 [𝑞] [𝑆] =
𝑇 [3] [𝑆6] = false, and therefore 1 is not a maximal token.

When the tokenization DFAA sees 1.4 and reaches the final

state 5, the token-extension DFA has seen 1.4.. and reached

𝑆3 = {𝑠1, 𝑠2, 𝑠3, 𝑠5}. None of 𝑠1, 𝑠2, 𝑠3 and 𝑠5 is final, therefore

𝑇 [𝑞] [𝑆] = 𝑇 [5] [𝑆3] = true and the token 1.4 is maximal.

The tokenization algorithm of Fig. 6 requires a bounded
buffer of size𝐾 , because the automatonB is𝐾 symbols ahead

of the automaton A. This means that the symbols from the

input stream have to be delayed by 𝐾 steps for A, and a

buffer of size 𝐾 can implement this delay.

Theorem 20 (Correctness). The algorithm of Fig. 6 per-

forms maximal-munch tokenization for every grammar 𝑟

with TkDist(𝑟 ) = 𝐾 < ∞.

Proof. Let A be the tokenization DFA and B = TeDFA(A).
The correctness of the algorithm relies on the following in-

variants for the main tokenization loop that starts at Line 10:

1. startP ≤ pos
2. the prefix text [0..startP] has been correctly tokenized

3. each strict prefix of text [startP ..pos] is not a maximal

token

4. 𝑞 = 𝛿A (initA, text [startP ..pos])
5. 𝑆 = 𝛿B (initB, text [pos..pos + 𝐾])

We will examine the case where text [startP ..pos] is a maxi-

mal token. The case where it’s not a maximal token can be

handled similarly, using the fact that the non-maximality of

the token is witnessed by some extension text [pos..pos + 𝑘]
with 𝑘 ≤ 𝐾 = TkDist(𝑟 ) (i.e., of length ≤ 𝐾 ).

Since text [startP ..pos] is a token, it must be the case that

𝑞 is final. 𝑆 is the state of the DFA B = TeDFA(A), which
is constructed from TeNFA(A) through the (modified) pow-

erset construction we described earlier. So, we can view it

as a “powerstate”, i.e., a set of states of TeNFA(A). Since

text [startP ..pos] is maximal, there exists no extension

text [startP ..pos + 𝑘]
that is a token (i.e., belongs to the language of the grammar).

Now, we claim that 𝑇 [𝑞] [𝑆] = true. Assume for the sake

of contradiction that 𝑇 [𝑞] [𝑆] = false. Since we already

know that 𝑞 is final, it must be (from the definition of the

token-maximality table𝑇 ) that there exists some TeNFA(A)
state 𝑠 ∈ 𝑆 such that 𝑠 is final that Λ(𝑠) = 𝑞. By the def-

inition of TeNFA(A), this implies that there exists some

token-extension path 𝜋 in A that (i) starts with 𝑞 and (ii)

is labeled with some nonempty prefix text [pos..pos + 𝑘] of
text [pos..pos + 𝐾] (i.e., 𝑘 ≤ 𝐾 ). But this means that

text [startP ..pos] · text [pos..pos + 𝑘] = text [startP ..pos + 𝑘]
is a token, contradicting the maximality of text [startP ..pos].

We have thus established that𝑇 [𝑞] [𝑆] = true. We can see

in Line 14 that the algorithm proceeds to correctly identify

text [startP ..pos] as a maximal token and to appropriately

update the value of the index startP . The preservation of the

invariants follows from these observations. □

Time Complexity. The algorithm performs three table

lookups (𝛿A , 𝛿B , and𝑇 ) for each symbol of the input stream.

This means that the time per symbol is 𝑂 (1). So, the total
time is 𝑂 (𝑛), where 𝑛 is the length of the input stream. In

contrast to our algorithm, the backtracking algorithm of

flex has time complexity Θ(𝑚𝑛), where𝑚 is the size of the

tokenization grammar. This is because, in the worst case, it

may have to backtrack by𝑚 steps for every symbol of the

input stream. In our experimental results of §6 (see Fig. 8),

we see the dependence of flex’s running time on𝑚.

Memory Footprint. The StreamTok algorithm has a small

memory footprint for typical tokenization grammars. The

DFAs A, B, and the table 𝑇 have sizes that are independent

of the stream length. A buffer of size 𝐾 (max-TND) is needed

to implement the delay. For practical workloads, the memory

footprint of StreamTok is in the order of kilobytes.

6 Experiments
We have implemented the static analysis algorithm of Fig. 3

and the StreamTok algorithm for streaming tokenization

(Fig. 6) in Rust. In this section, we describe experiments we

have conducted to answer the following research questions:

(1) What is the maximum token neighbor distance of tok-

enization grammars that are used in practice?

(2) Is our static analysis algorithm (Fig. 3) sufficiently effi-

cient for analyzing real-world grammars?

(3) Is the performance of StreamTok competitive against

state-of-the-art lexers/tokenizers?

(4) How do the input stream buffer size and the average

token length influence tokenization performance?

(5) What is the performance benefit that StreamTok offers

to high-level real-world applications?
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Table 1. Max-TND for data exchange formats and program-

ming/query languages.

NFA/Grammar Size DFA Size Max-TND

JSON 32 34 3

CSV 8 9 1

TSV 5 7 2

XML 36 32 6

C 310 263 ∞
R 141 100 ∞

SQL 504 398 ∞

(6) What are the tradeoffs between StreamTok and the of-
fline tokenization algorithms of [29] (OOPSLA’25)?

Experimental Setup. The experiments for RQ1 and RQ2

were conducted on a Linux server equipped with an Intel

Xeon E5-2640 v4 CPU clocked at 2.40 GHz and 128 GB of

RAM. The experiments for the rest of the RQs were con-

ducted on a Linux workstation with an AMD EPYC 7252

8-core processor at 3.10 GHz and 256 GB of RAM.

RQ1: Analysis of Real-world Tokenization Grammars
Our goal here is to understand whether tokenization gram-

mars used in practice are amenable to streaming tokeniza-

tion with StreamTok. So, we collect and analyze (using our

algorithm of Fig. 3) grammars for standard formats and pro-

gramming/query languages and grammars from GitHub.

Data Formats & Programming Languages. We have

executed our static analysis on the tokenization grammars

of popular data exchange formats: JSON (JavaScript Ob-

ject Notation) [5], CSV (comma-separated values) [42], TSV

(tab-separated values) [22], and a subset of XML (Extensible

Markup Language) [2]. Table 1 shows the results of our static

analysis. Table 1 includes the results for tokenization gram-

mars used in parsers for the popular programming languages

C, R, and SQL. These grammars are more complex compared

to the data formats: the NFA and DFA sizes are larger, and

max-TND is infinite. We will not consider grammars of pro-

gramming languages in our evaluation of StreamTok (RQ3

to RQ6), because program parsing involves small source files

that do not need to be tokenized in a streaming fashion.

It is no surprise that simple formats such as CSV and

TSV have smaller automata sizes than JSON and XML. We

also notice that JSON, CSV, TSV, and XML have bounded

max-TND and are therefore suitable for streaming tokeniza-

tion. The variant of the CSV tokenization grammar that uses

the rule "([^"]|"")*" for quoted fields (as per the RFC [42])

has unbounded max-TND. The set of token neighbor pairs

{ "" ↣ """a" , "" ↣ """aa" , "" ↣ """aaa" , . . .} witnesses
this fact. The string "" is the empty quoted field. The first

quote in the string """ is the opening quote of the field, and

the next two quotes form an escape sequence that represents

a single quote character. In our CSV grammar variant (with

max-TND 1), we use the rule "([^"]|"")*"? instead, which

makes the closing quote optional. Our variant has the same

behavior for syntactically well-formed CSV documents. We

can easily confirm well-formedness of a quoted-field token

by checking that it contains an even number of " symbols.

GitHub-sourced Grammars. To obtain a large collec-

tion of real-world grammars, we have randomly sampled

grammars that are available in public GitHub repositories.

We have also performed de-duplication of the downloaded

grammars, as there are cases where the same grammar is

used across several repositories. We have created a dataset of

2669 grammars. Fig. 7 shows the results of our analysis. The

size of a grammar is taken to be the number of states of its

NFA. About 81% of the collected grammars are of size at most

100. Fig. 7a shows the histogram that visualizes the distribu-

tion of grammar sizes at most 100. In particular, grammars

of size less than 20 are the most prevalent. The largest gram-

mar in our dataset is of size 2496. As reported by our static

analysis, 32% of the grammars have unbounded max-TND.

Among the grammars with bounded max-TND (68%), 53%

have max-TND 1, making up 36% of the entire dataset. Fig. 7b

visualizes the distribution of max-TND over the collected

grammars. Most grammars with bounded max-TND have

max-TND at most 4. There are 8 outliers (i.e., grammars with

bounded max-TND greater than 20) that are not shown. The

largest bounded max-TND we observe is 51. We also explore

the relationship between DFA size and NFA/grammar size,

which is shown in Fig. 7c. For our dataset, this relationship

can be decently approximated by a linear regression, with

only a few prominent outliers. In theory, the size of the DFA

can be exponential in the NFA size. Our data set suggests

that such a blowup is uncommon in practice.

Summary of RQ1: About two-thirds of the tokenization
grammars in our GitHub-sourced dataset have bounded max-

TND. Popular data exchange formats can be tokenized using

grammars with bounded max-TND.

RQ2: Performance of Static Analysis
Fig. 7d shows the execution time of our static analysis (aver-

age across several trials) w.r.t. grammar size. The variance

in execution time is negligible and therefore not visible in

the plot. Both axes are in logarithmic scale, and we observe

that the running-time growth of our algorithm w.r.t. gram-

mar/NFA size is roughly polynomial. This empirical obser-

vation is consistent with the asymptotic complexity of the

algorithm. Recall that the algorithm of Fig. 3 is quadratic

w.r.t. DFA size. We also see in Fig. 7c that the relationship

between DFA and NFA/grammar size is roughly linear for

our dataset. So, the algorithm of Fig. 3 could appear to be

quadratic in NFA/grammar size, which is consistent with the

plot of Fig. 7d. More specifically, 88.7% of the grammars are

analyzed in under 1 ms; 97.9% in under 10 ms; 99.4% in un-

der 100 ms; and 99.96% in under 1 sec. The most challenging
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Figure 7. Analysis results for our GitHub-sourced dataset of tokenization grammars.

grammar in the dataset has size 48, its DFA has size 10703,

and our tool takes 3.38 seconds to analyze it.

Summary of RQ2: The worst-case polynomial time com-

plexity of our static analysis is consistent with our experi-

mental observations. Our analysis executes in under 100 ms

(resp., 1 sec) on 99.4% (resp., 99.96%) of the grammars, so it

is suitable for practical use.

RQ3: StreamTok Performance Against Existing Tools
We evaluate the performance of StreamTok against existing

lexers/tokenizers. We consider both (i) synthetic instances to

explore the worst-case behavior of the tools, and (ii) realistic

instances to investigate performance for practical workloads.

Baseline Tools. For the experimental comparison against

StreamTok, we consider the following baseline approaches:

flex [47], the algorithm of Reps [38], Rust nom [12], Rust

plex [44], Rust regex [14], and ExtOracle [29]. The lexer gen-

erator flex [47] produces a C implementation of the DFA-

based backtracking algorithm that we described in Fig. 2.

Even though our pseudocode description is not streaming

(for the sake of simplicity), flex explicitly supports streams.

It can process an input stream (read with system calls to the

OS) in a block-by-block fashion. It tokenizes one block as

much as possible before moving on to processing the next

block. The other tools either do not explicitly support stream-

ing input or they have semantic differences from maximal-

munch tokenization. For this reason, we consider flex to be

the most suitable baseline for comparing with StreamTok.

The tokenization algorithm of Reps [38] builds upon flex’s

algorithm by adding a memoization table that helps avoid

excessive backtracking. Since StreamTok is implemented in

Rust, we also consider the Rust libraries nom [12], plex [14],

and regex [14]. These libraries do not provide support for the
streaming setting, which raises two issues: (i) the user has the

additional burden of writing code for block-by-block stream

processing, and (ii) tokens can straddle the boundaries of

stream blocks, an error-prone situation that the user might

handle incorrectly. The Rust crates nom and regex do not

target the maximal-munch tokenization problem as they per-

form greedy matching, but we have been able to encode our

benchmark tasks with them. For example, Rust::regex uses
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Figure 8. RQ3: Performance comparison on the family of

grammars 𝑟𝑘 = (a{0,𝑘}b)|a with TkDist(𝑟𝑘 ) = 𝑘 . StreamTok

and ExtOracle have Θ(1) time-per-symbol, i.e., independent

of 𝑘 . For other tools, time-per-symbol is Θ(𝑘).

the greedy (PCRE) semantics for disambiguation [13, 19],

which does not always coincide with the maximal-munch se-

mantics [32]. The tokenization algorithm ExtOracle [29] is
inherently offline and therefore cannot be used with stream-

ing input. To run ExtOracle, the entire input data has to be

first loaded in memory, which can make it impractical in the

streaming setting.

Microbenchmark: Worst-case Behavior. We consider

the family of grammars 𝑟𝑘 = (a{0,𝑘}b)|a with TkDist(𝑟𝑘 ) =
𝑘 . That is, the parameter 𝑘 is the max-TND of the grammar

𝑟𝑘 . Also notice that the size𝑚 of the grammar is linear in 𝑘

(bounded repetition is treated as an abbreviation). We use

a 10 MB input string consisting of only a letters. We know

that flex backtracks by 𝑘 characters for each input symbol,

which means that it has Θ(𝑘) time-per-symbol complexity.

In Fig. 8, we see the results for all tools. The left plot

shows the execution time w.r.t. 𝑘 . Notice that StreamTok and

ExtOracle have constant (w.r.t. 𝑘) running time. For all other

tools, the running time is proportional to 𝑘 . The right plot

shows the throughput of the tools w.r.t. 𝑘 . StreamTok and

ExtOracle have constant throughput. For the rest of the tools,

throughput drops substantially as the max-TND 𝑘 increases.

The main observation is that the performance of all prior

streaming tokenization approaches can degrade for certain

difficult instances. The performance of StreamTok is robust

w.r.t. the choice of tokenization grammar.
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Figure 9. RQ3: Tokenization time for textual data formats.

Practical Workloads. In addition to common data for-

mats (JSON, CSV, TSV, and XML), we also include grammars

for tokenizing YAML, FASTA, and DNS zone files. YAML [37]

(max-TND 2) is an extension of the JSON format that uses

indentation to enhance the human readability of documents.

FASTA [36] (max-TND 1) is a textual format that is used to

encode protein and DNA sequences in bioinformatics ap-

plications. We also include a tokenization grammar for log

files (max-TND 1) stored under the directory /var/logs/ of

Linux. In RQ5, we discuss more log parsing applications and

how they benefit from StreamTok. DNS zone files [33] (max-

TND 1) include DNS records that are separated by newlines

and whitespace that follow the definitions in RFC 4034 [40].

Fig. 9 shows the running time of StreamTok and all base-

line tools for the previously-described formats. There is a

plot for each data format. All grammars have bounded max-

TND. In each plot, the horizontal axis is the length of the

input stream (in MB = 10
6
bytes) and the vertical axis is the

execution time (in seconds). The plots of Fig. 9 show that

all tools exhibit linear-time behavior (w.r.t. stream length)

across all workloads. Fig. 10 shows the throughput for each

tool and workload. We notice that StreamTok outperforms

all other tools. The second fastest tool is ExtOracle, but it is

offline. As mentioned earlier, flex [47] is the only tool (apart

from StreamTok) that truly supports streaming tokenization

and is therefore the most suitable baseline for our perfor-

mance comparison. It can be seen in Fig. 10 that StreamTok

is 2–3 times faster than flex.

Summary of RQ3: StreamTok is asymptotically faster

than prior streaming tokenizers and there are grammars for

which this is reflected in tokenization performance (Fig. 8).

StreamTok outperforms other tokenizers on practical work-

loads involving various data formats (Fig. 9). It is 2–3 times

faster than flex, which is a popular lexer generator with

explicit streaming support (Fig. 10).

RQ4: Impact of Buffer Size and Token Length
We identify two parameters in the streaming setting that

can affect performance, namely buffer capacity (for the input
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Figure 10. RQ3: Throughput of StreamTok and baseline tools

for tokenizing various text-based data formats.
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Figure 11. RQ4: Examine different buffer and token sizes.

stream) and average token length. Flex is the only existing

tool among all considered ones that is inherently streaming.

Hence, in this section, we only consider flex and StreamTok.

Effect of the Input Stream Buffer Capacity. For stream-

ing tokenization, buffer capacity matters to both the perfor-

mance and latency, as the input stream is delivered chunk-

by-chunk to the tokenizer. Whenever we refill the buffer, we

need to perform a read system call and move any unpro-

cessed input from the end of the buffer to the start. Thus, if

the buffer is too small, this overhead becomes significant and

negatively affects the throughput. However, a larger buffer

causes higher latency and uses more memory. Therefore,

there is a tradeoff between throughput and latency.

Fig. 11a examines different buffer capacities for JSON and

CSV using flex and StreamTok. The performance improves

as the buffer increases to 64 KB and it plateaus beyond this

buffer size. Therefore, we conclude that 64 KB is the most

suitable buffer capacity, which also aligns with the default

Unix pipe buffer capacity.

Effect of Token Length. We investigate the relationship

between average token length and tokenization performance.

Fig. 11b shows the results for tokenizing CSV and JSON

with flex and StreamTok. The input stream buffer capacity is

64 KB. When the tokens are shorter, the tokenization perfor-

mance drops. This happens because token generation (and

consumption) requires additional work to be performed.
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Summary of RQ4: A buffer capacity of 64 KB is a good

choice for StreamTok. The number aligns with the Unix pipe

buffer capacity. In addition, we observe that streams with

shorter tokens result in reduced performance.

RQ5: Higher-level Applications that Use Tokenization
Tokenization is typically part of a larger pipeline that imple-

ments a higher-level application. We consider here several

such applications to demonstrate that optimizing tokeniza-

tion is worthwhile.

Log Parsing. Computing systems employ logging to record

runtime information that can be used later for analysis and

debugging. Logs are typically lists of events, and they are

presented as loosely structured text. Log parsing is the task

of converting raw logs into a semi-structured representation

that is more suitable for further processing. Due to their

simplicity, the parsing of logs can be performed with just

a tokenizer, without using complex stack-based parsing al-

gorithms. There are settings where the timely analysis of

logs demands the use of a streaming log parsing technique.

Even in cases where log events are batched in files, stream

processing can be essential when the log files are too large to

load in memory, or they are fed to pre-processing pipelines

(e.g., decompression, filtering, etc.) that generate streams.

We consider commonly used log formats, including An-

droid, Apache HTTP Server, and Linux. For each log format,

we have handcrafted a suitable tokenization grammar that

can tokenize real logs from LogHub [50] and Kaggle [21].

We investigate whether tokenization takes up a signifi-

cant amount of time in log parsing, and whether we can

reduce the running time by using StreamTok. We consider

the computational task of converting raw logs into a semi-

structured TSV representation. Table 2 shows the execution

time when flex or StreamTok are used to tokenize. We ob-

serve that StreamTok is substantially faster than flex. Most

importantly, the use of StreamTok instead of flex gives a 2.5×
to 3.1× speedup for the overall log-to-TSV application.

Format Conversions and Validation. Tokenization is

an important part of implementing format conversions and

data validation. Format conversions are common in data mi-

gration, and data validation is crucial for ensuring that data

is of an appropriate form before it is processed. For format

conversions, we consider CSV to JSON, JSON to CSV, JSON

minification, JSON to SQL, and SQL loads. JSON minification

refers to the removal of unnecessary whitespace from a JSON

file. JSON to SQL refers to creating SQL commands that load

a JSON file into a database. SQL loads refer to loading SQL

migration files that consist of SQL INSERT INTO statements.

For validation, we consider CSV schema inference and val-

idation. CSV schema inference refers to inferring the data

type for each column (we implement inference that agrees

with the csvstat tool provided in csvkit [20]). CSV validation

is about validating that the CSV file contains columns of

Table 2. RQ5: Application speedup when using StreamTok

instead of flex. The columns ‘flex’ and ‘StreamTok’ give to-

kenization times (in seconds). The column ‘rest’ gives the

time (in seconds) spent processing the token stream.

Application flex StreamTok rest speedup

Android 0.249 0.081 0.003 2.98

Apache 0.138 0.054 0.001 2.52

BGL 0.299 0.091 0.015 2.95

Hadoop 0.321 0.113 0.008 2.71

HDFS 0.271 0.082 0.008 3.10

Linux 0.180 0.064 0.003 2.74

Mac 0.283 0.093 0.004 2.97

Nginx 0.482 0.172 0.016 2.65

OpenSSH 0.174 0.064 0.005 2.61

Proxifier 0.204 0.067 0.005 2.89

Spark 0.161 0.056 0.005 2.71

Windows 0.230 0.085 0.003 2.64

JSON to CSV 4.55 1.40 0.16 3.02

JSON Minify 4.55 0.73 0.14 5.39

CSV to JSON 2.06 0.60 0.50 2.33

CSV Schema Validation 2.06 0.646 0.014 3.14

CSV Schema Infer 2.06 0.65 0.04 3.04

JSON to SQL 4.55 1.40 0.67 2.52

SQL loads 3.91 1.10 0.61 2.64

specified data types. We observe in Table 2 that tokeniza-

tion is a significant part of the total execution time in all

applications. For example, for JSON minification, it takes

4.55 + 0.14 = 4.69 s to minify a JSON file with flex, but only

0.73 + 0.14 = 0.87 s with StreamTok. So, JSON minification is

5.39× faster when StreamTok is used instead of flex.

Summary of RQ5: Tokenization is a significant part of

the total running time for higher-level applications: log pars-

ing, format conversions, and data validation. StreamTok can

offer a substantial performance benefit (2.5× to 5× compared

to flex) for these applications by speeding up tokenization.

RQ6: Comparison with OOPSLA’25 Algorithms
The work [29] proposes the ExtOracle and TokenSkip al-

gorithms. Both are inherently offline, i.e., they require the

entire input to be available before the computation can start,

and cannot be used in a streaming setting. More specifically,

they first perform a backwards (right-to-left) pass and then

a forward (left-to-right) pass over the input. The backwards

pass would have to start from the end of the stream. For an

unbounded stream, this is impossible. For a bounded stream,

this would require buffering the entire stream before any pro-

cessing can start. For large or fast streams both algorithms

of [29] are impractical: they can easily run out of memory

and the latency would be unbounded.

It was demonstrated in [29] that ExtOracle is the more

competitive algorithm in practice, so we will only consider

ExtOracle here. We have seen in RQ3 (Fig. 10) that ExtOracle

has competitive throughput on many workloads. Regarding

memory usage, ExtOracle buffers the entire stream and hence
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needs much more memory than StreamTok. We empirically

verify this claim regarding memory usage (in MB) by using

the same set of grammars and files as in RQ3:

Method csv json tsv log fasta yaml

StreamTok 0.1 0.1 0.1 0.1 0.1 0.1

ExtOracle 2003.0 2004.6 2003.0 2007.3 2003.1 2019.0

The input size is always 1000 MB (prefix from each file). For

StreamTok, the memory footprint consists of the 64 KB input

buffer and the DFA representation. We measure the Resident

Set Size (RSS) for ExtOracle.We observe that ExtOracle needs

orders of magnitude more memory to store the stream and

the “lookahead tape” computed during the backwards pass.

ExtOracle has the advantage that it can be applied to any

grammar regardless of max-TND, while StreamTok cannot

work with grammars with unbounded max-TND. This means

that there is a tradeoff between efficiency and generality.

While StreamTok can only be used on a restricted subset of

tokenization grammars (which our static analysis of Fig. 3

can identify), it is more space-efficient and can be used on

large or unbounded input streams.

Summary of RQ6: The algorithms of [29] are not suitable

for the streaming setting, as they buffer the entire stream.

The benefit of ExtOracle [29] is that it applies to all tokeniza-
tion grammars, including those with unbounded max-TND.

StreamTok, on the other hand, applies only to grammars with

bounded max-TND. For this subclass of grammars, Stream-

Tok is much more memory-efficient than ExtOracle, because

StreamTok supports block-by-block processing for streams.

7 Related Work
Tokenization is also called lexing or scanning, especially

in lexical analysis. Some early relevant works are [10, 24].

Conway [10] proposes structuring a compiler as a pipeline

of stages (“coroutines”) that communicate with data streams.

In particular, [10] considers lexical analysis and syntactical

analysis as two separate stages. Johnson et al. [24] propose

the use of regular expressions and finite-state automata for

the automatic generation of “lexical processors”.

The standard textbook algorithm for lexing is automata-

based [1]. This standard algorithm may exhibit quadratic-

time behavior (in the worst case) due to backtracking. The

lexer generator flex [47] implements the technique described

in [1]. Reps [38] proposed a linear-time lexing algorithm that

uses memoization to avoid exploring paths that are already

known to fail. A disadvantage of the approach of [38] is its

high memory cost, which is 𝑂 (𝑀𝑛), where𝑀 is the size of

the DFA and 𝑛 is the length of the input. Two linear-time

tokenization algorithms were recently proposed in [29]. The

main idea is to first perform a right-to-left pass to compute

lookahead information and then perform a left-to-right pass

for backtracking-free tokenization. The approach of [29]

solves both the quadratic backtracking issue of flex [47] and

the high memory costs of [38].

Some popular lexer generators are flex [47], Ragel [9],

RE/flex [39], and re2c [7]. Flex is a state-of-the-art lexer

generator that supports streaming input and implements the

DFA-based backtracking algorithm. Ragel, RE/flex, and re2c

implement the same tokenization algorithm as flex.

Algorithms for parallel lexing are investigated in [4] and

[30]. Verbatim [15], Verbatim++ [16], and Coqlex [35] are

formally verified lexing tools. They produce verified lexers

that are mathematically guaranteed to conform to a standard

maximal-munch specification. These works are based on Br-

zozowski derivatives [6]. Derivative-based approaches may

suffer in performance due to potential blowups in the sizes of

the derivatives. However, Brzozowski derivatives are conve-

nient for functional implementations and give rise to simple

proofs of correctness. So, it is not surprising that several

works in verification choose derivatives [3, 11, 45, 46, 51]

over alternatives (e.g., that use automata).

8 Conclusion
We have studied the problem of maximal-munch tokeniza-

tion in a streaming setting. The tokenizer is specified using

a grammar that consists of regular expressions (tokenization

rules). We have seen that (in the worst case) tokenization

requires space that is proportional to the stream length. We

have introduced the notion of maximum token neighbor

distance (max-TND), which is key for identifying grammars

that admit streaming tokenization. Computing max-TND is

PSPACE-complete. We have designed a static analysis algo-

rithm for computing the max-TND, which is efficient when

the tokenization DFA is small. Finally, we have proposed an

efficient streaming tokenization algorithm (StreamTok) that

can be applied to grammars with bounded max-TND. Our

experimental evaluation has shown that StreamTok has a

performance advantage over existing tools and it can benefit

several higher-level applications that rely on tokenization.

Future Work. One direction for future work could be to

parallelize the StreakTok algorithm so that it can take ad-

vantage of multi-core CPUs when handling high-speed data

streams. Parallelization is expected to be easier for bounded

max-TND, as the information needed to check token maxi-

mality is more local. The techniques of [34] may be relevant.

Tokenization may also benefit from acceleration with GPUs

[17, 18, 27] or custom hardware [48, 49]. Finally, Stream-

Tok could be used to accelerate data processing (e.g., JSON

validation) with application-specific tokenizers [28].
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