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Abstract

Tokenization, also referred to as lexing or scanning, is the
computational task of partitioning an input text into a se-
quence of substrings called tokens. Tokenization is one of
the first stages of program compilation, it is used in natural
language processing, and it is also useful for processing un-
structured text or semi-structured data such as JSON, CSV,
and XML. A tokenizer is typically specified as a list of regular
expressions, which is called a tokenization grammar. Each
regular expression describes a class of tokens (e.g., integer,
floating-point number, variable identifier, string literal). The
semantics of tokenization employs the longest match policy
to disambiguate among the possible choices. This policy says
that we should prefer a longer token over a shorter one. It is
also known as the maximal munch policy.

Tokenization is an important computational task when
processing semi-structured data, as it often precedes parsing,
querying, or data transformations. Due to the abundance of
large-scale semi-structured data, which can be too large to
load in memoryj, it is desirable to perform tokenization in
a streaming fashion with a small memory footprint. First,
we observe that some tokenization grammars are inherently
more difficult to deal with than others, and we provide a static
analysis algorithm for recognizing them. We continue to pro-
pose the StreamTok algorithm, which relies on this analysis
to enable efficient tokenization. StreamTok is asymptotically
better than the standard algorithm of flex. Our experimental
results show that our implementation of StreamTok outper-
forms state-of-the-art tools for tokenization.
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1 Introduction

Many modern data-driven applications rely on the process-
ing of massive amounts of unstructured (e.g., text corpora
and system logs) or semi-structured data, such as JSON,
YAML, XML, and CSV. Tokenization, also known as scanning
or lexing, is often the first step in processing unstructured
and semi-structured data. Tokenization is the splitting of a
string into a sequence of tokens. The rules that specify how
the string should be split into tokens are typically given by
a list of regular expressions.

Many applications consume streaming data, which is gen-
erated in real time, and need to process and respond with
low latency. Streaming applications have to deal with large
streams that cannot be stored in system memory. For this
reason, stream processing requires the development of tech-
niques that have a small memory footprint. There are sit-
uations where the data is available offline (e.g., on a hard
disk), but is too large to load in the system memory. Stream-
ing techniques are also valuable in such situations because
the data can be read and processed block-by-block without
loading the entire dataset at once.

Here, we focus on the computational problem of tokeniza-
tion in the streaming model. Our techniques can benefit
applications that deal with streaming or static (but too large
to load in memory) unstructured and semi-structured data.

A tokenizer (scanner or lexer), is a program that tokenizes
a given input string. Such a program can be handcrafted
or automatically generated by tools commonly referred to
as lexer generators. In particular, lexer generators take as
input user-defined grammars and output a lexer that will
perform tokenization according to the supplied user-defined
grammar. Some popular lexer generators used in practice
include flex [47], JFlex [23] and Ocamllex [43].

A lexer generator provides useful flexibility compared to
a handcrafted implementation for a fixed grammar. Some
grammars are often adapted by users. E.g., CSV/TSV gram-
mars can vary based on how we delimit fields, how we delimit
records, and how we use escaping in fields. Changing a tok-
enizer grammar is a lot easier than changing a handcrafted
implementation of a tokenizer. Even when a grammar is
standardized, adaptation may be useful for a specific applica-
tion. For example, JSON minification (removing unnecessary
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whitespace) can be performed with a simplified (and more ef-
ficient) lexical grammar that identifies whitespace. Moreover,
some applications (e.g., log parsing) require the continual
addition of new formats, which are conveniently handled
with grammars and lexer generators. Finally, there are cases
where we may want to adapt a grammar based on runtime
information. E.g., a CSV parsing tool can use schema infor-
mation (given at runtime as a command-line argument) to
adapt the grammar for recognizing the types of the fields.

The aforementioned lexer generator tools implement the
maximal-munch disambiguation policy, where longer tokens
are preferred over shorter tokens. When there is a tie, the
earliest tokenization rule is preferred. We formulate our tok-
enization problem (§2) according to this policy. It is known
that the standard backtracking-based tokenization algorithm,
which these tools implement, has a worst-case time complex-
ity of O(n?), where n is the size of the input text.

Tokenization is often a preprocessing step for parsing
and AST generation, but it has more uses. Tokenization can
perform simple transformations on data and reduce data
volume. E.g., to process a specific column in a streaming
CSV file, we can first extract the desired column through
tokenization before propagating the reduced data to the next
stage of the pipeline. Tokenization enables simple queries
and aggregations on (streaming) data, such as counting the
number of numeric fields in a JSON file. Performing queries
directly over the token stream (i.e., without full parsing) is
valuable because processing streaming data is challenging
due to latency and memory constraints.

Efficient tokenization over streaming data presents a chal-
lenge. As we show in §2, streaming tokenization requires
(for some grammars) a memory footprint that is linear in
the stream length. We can, however, restrict our attention
to a class of tokenization grammars that admit low-memory
streaming tokenization. This class contains many grammars
used in practice. Moreover, they can be identified by a static
analysis' (see §4). For this class of tokenization grammars, we
propose a time- and space-efficient tokenization algorithm
that is appropriate in the streaming setting (see §5).

Main Contributions:

(1) We consider maximal-munch tokenization in the stream-
ing model and show that it requires (in the worst case)
space that is proportional to the input stream.

(2) We introduce the novel notion of (maximum) token neigh-
bor distance. This semantic notion is used to indentify
the tokenization grammars to which our efficient stream-
ing tokenization algorithm can be applied. We observe
that this notion also sheds light on the worst-case per-
formance of backtracking-based tokenization.

(3) We show that computing the maximum token neighbor
distance for a tokenization grammar is PSPACE-complete

IWe use the term static analysis because it applies to the tokenization
grammar before execution and is independent of the input text.
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(Theorems 13, 14). We also propose a static analysis that
takes as input a tokenization grammar and outputs its
maximum token neighbor distance (Theorem 15).

(4) We propose an efficient streaming tokenization algorithm
(StreamTok) applicable to the class of tokenization gram-
mars with bounded maximum token neighbor distance.

(5) We collect tokenization grammars for data exchange for-
mats and a dataset from GitHub. Our static analysis sheds
some light on the complexity of grammars used in prac-
tice. We find that our streaming tokenization algorithm
applies to a significant portion of these grammars.

(6) Our experimental evaluation shows that the proposed
streaming tokenization algorithm offers a performance
benefit, namely a 2X to 3X speedup, over existing tok-
enization tools such as flex [47]. The memory footprint
of our algorithm is in the order of kilobytes, regardless of
the length of the input stream (which could be infinite).

(7) We consider higher-level applications (log parsing, for-
mat conversions, and data validation) that use tokeniza-
tion and show the performance benefit of our approach.

2 The Streaming Tokenization Problem

We start this section by introducing the tokenization problem.
Then, we discuss tokenization in the streaming model and
present a relevant complexity result.

Let X be a finite alphabet of symbols (letters, characters).
A unary predicate o C X is called a character class. The
set Reg(X) of regular expressions (regexes) is defined by the
grammar r,ry,rp s=¢ | o | (ry | rz) | r1 - r2 | r*. Concatena-
tion is also written as r;ry to reduce notational clutter. The
notation r* (“repetition of r at least once”) is an abbreviation
for rr*. The notation r? is an abbreviation for r | ¢. For a
regular expression r, the notation r” is an abbreviation for
the concatenation r - r - - - r (n times). The notation r{n} is
also commonly used to describe the repetition of r exactly
n times. More generally, we write r{m,n} = r™(r?)"~™ to
denote the repetition of r from m to n times. Following PCRE
conventions, we also use notation for character classes. For
instance, the regular expression [abc] accepts a character a,
b, or ¢, which is equivalent to the regular expressions [a-c]
and a | b | c. Negation can be used inside character classes.
For example, the regex [“abc] matches any character that is
not a, b, or c. Every regular expression r denotes a language
L(r) € ¥*, defined as usual.

We write |w| to denote the length of a string w. The empty
string (i.e., the string of length 0) is denoted by ¢. For a string
w € 3*, we will call a pair [i, j] with 0 < i < j < |w]| a loca-
tionin w. A positionin |w| is an index in the range 0, 1,.. . ., |w|.
We write w[i..j] for the substring of w at location [i, j].
E.g., for the string w = abbcabab (length |w| = 8), we have
that w[0..3] = abb, w[1..5] = bbca, w[4..7] = aba, and
w|5..8] = bab. We also use the abbreviations w|..i] = w[0..i]
and w[i..] = w[i..|wl|].
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Let u,v € X*. We say that u is a prefix of v, and we write
u < v, if there is a string w € ¥* such that uw = v. When
u < v, we also say that v is an extension of u. The prefix
relation < is a partial order (i.e., reflexive, antisymmetric,
and transitive). The empty string ¢ is the least element of
the prefix relation. We write u < v to denote that u < v and
u # v, and we say that u is a strict prefix of v (and that v is
a strict extension of u). When u < v, we write u™'v for the

unique string such that u - (u™1v) = 0.

Definition 1 (Tokenization). Let 7 = [rg,7q,...,7«-1] be a
nonempty sequence of regular expressions. We call each rg
a (tokenization) rule and 7 a tokenization grammar.

We write T = N for the set of all token ids. We define
token(7) : =* — Option(Z* x T) as follows: token(7)(u) =
Some(v, f§), where v is the longest nonempty prefix of u that
matches some token regex and f € {0, ...,k — 1} is the least
index such that v € L(rg). We prefer the rule with the least
index if there are several rules that match the longest token.

We also define tokens(7) : ©* — List(Z* x T) as follows:

tokens(7)(u) = [ ], if token(7)(u) = None
tokens(7)(u) = [(v, B)] - tokens(7) (v u),

if token(7)(u) = Some(v, B), where v 'u is the result of
removing the prefix v from u.

The tokenization problem is the following: Given a tok-
enization grammar 7 and a string w € ¥* as input, compute
the list tokens(7) (w). For a fixed tokenization grammar 7, the
7-tokenization problem is the following: Given an input string
w € X" as input, compute the list of tokens tokens(F) (w).

Example 2 (Tokenization). Consider the tokenization

grammar 7 = [a, ba*, c[ab]*] and the text w = abaabacabaa.
Then, token(7) (w) = Some(a, 0) because the string a matches
the regular expression a, and no other strings starting at the

beginning of w match any of the three rules. Then, we notice

that token(7)(w[1..]) = Some(baa, 1), token(7)(w[4..]) =

Some(ba, 1). Finally, token(7)(w|6..]) = Some(cabaa, 2) be-
cause the entire remaining part of the string can be matched

for the regex c[ab]*, which is the longest match possible.
So, tokens(7)(w) = [(a,0), (baa, 1), (ba, 1), (cabaa, 2)]. The

entire input string is tokenized.

Let 7 = [ro,r1, ..., c—1] be a tokenization grammar. We
sometimes represent 7 as a single regular expression ry | ry |
-+ | re—1, where the top-level operator is x-ary nondeter-
ministic choice. E.g., the grammar [ a, axb, [abl*[*ab] ] with
three token rules is represented as the regex a|axb|[ab]*[*ab].

Definition 3 (Tokenization DFA). A DFA over the alpha-
bet X is a tuple A = (Q, §, qinit, F), where Q is the finite set
of states,  : Q X X — Q is the transition function, g;n; € Q
is the initial state, and F C Q is the set of final states.

Let p,q € Q. If ¢ = 6(p, a), then we write p —¢ q. We
define the function § : Q X X* — Q as follows: §(q,¢) = q
and 6(q,ua) = 5(5(q,u),a) for u € X* and a € X. We also
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Figure 1. DFAs for the grammars [0-91|[ 1 and [0-91+|[ 1+.

define § : ¥* — Q as §(u) = 6(qinit, u). For a string u € X*,
the notation p —* q indicates that 6(p, u) = q.

A tokenization DFA is equipped with a function A : F — T,
where A(q) is the preferred token id for a final state q € F.

For a state g of a DFA, we say that q is a reject or failure
state if it cannot reach a final state. During DFA execution,
reaching a reject/failure state means that no extension of the
input string can lead to acceptance.

Example 4. Fig. 1 (left) shows the tokenization DFA for the
grammar [0-91|[ 1. Throughout this paper, the states of the
automata will be colored based on their associated grammar
rule. In this example, state 2 corresponds to the rule [] and
is assigned a dark blue color, while state 3 corresponds to the
rule [0-9] and is assigned a lighter blue color. State 1 is the
reject state and is assigned an orange color. The starting state
0 is not associated with any grammar rule and is uncolored.

From the initial state 0, if we receive a character that is
neither a digit nor a space, then the automaton reaches the
rejecting state 1 since it is impossible to form a token with
the received character. A space character leads to the final
state 2, which corresponds to the rule [ 1.From 2, receiving
any character will cause a transition to the rejecting state 1.
Similarly, receiving a digit at the initial state 0 leads to the
final state 3, which corresponds to the rule [0-9].

Example 5. We consider the grammar [0-9]+|[ 1+. The
tokenization DFA for this grammar is shown in Fig. 1 (right).
This is similar to the previous example. However, from state
2, we have a self-loop labeled with the space character, which
reflects the repetition operator + in the rule [0-91+. However,
as before, upon receiving a non-space character in state 2,
the automaton will reach the rejecting state 1. A similar
change is also seen in state 3.

Tokenization in the Streaming Model. In the stream-
ing model, the input is a potentially unbounded sequence of
items that are revealed gradually during the computation in-
stead of becoming available all at once at the beginning. Each
input item is read only once as it arrives. While we can store
input items seen in the past, storing the entire stream using
O(n) space (where n is the size of the input stream) is highly
undesirable. Moreover, in streaming tokenization, we would
like to emit each token as early as possible as we consume
the input stream. However, this is not easy according to the
maximal-munch semantics where we prefer longer tokens;
it is possible that the algorithm “waits” indefinitely without
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an output in search of a longer token. In Lemma 6 below, we
prove a space lower bound for any generic streaming tok-
enization algorithm and demonstrate the inherent difficulty
of the tokenization problem in the streaming model.

Lemma 6 (Space Lower Bound). There is a tokenization
grammar 7 for which the streaming tokenization problem re-
quires Q(n) space, where n is the length of the input stream.

Proof. Consider the three-letter alphabet ¥ = {a, b, c} and
the tokenization grammar 7 = [a,b, (a | b)*c]. We focus
on streams that consist of only a’s and b’s. In this case, the
algorithm cannot emit any output until the end-of-stream
symbol is encountered because the rule (a | b)*c will match
if the final letter is c. So, the algorithm has to store the entire
stream, in order to correctly produce the output in the case
when the stream ends without the letter c. O

Specifying Tokenizers. For our formulation of the tok-
enization problem, we chose to specify tokenizers as lists
of rules that are regular expressions. Alternatively, tokeniz-
ers could be specified using DFAs or NFAs. Our syntax of
regexes uses only the classical constructs (choice, concate-
nation, and Kleene star). Regexes used in practice often use
constructs that make them more succinct (e.g., bounded rep-
etition [25, 26] and lookaround assertions [8, 31]).

3 Token Neighbor Distance

This section starts by introducing novel semantic concepts
that capture the challenges in efficient streaming tokeniza-
tion. In particular, the notion of maximum token neighbor
distance tells us how many more input characters we need
to read in order to confirm whether a token is maximal or
not. Since this is semantically defined (in particular, without
reference to a specific tokenization algorithm), it captures
an aspect that is inherent in the tokenization grammar. The
concepts introduced in this section are used in our static
analysis of §4, which in turn enables our efficient streaming
tokenization algorithms of §5.

In §3.2, we note that this semantic notion also tells us some-
thing valuable about the standard backtracking tokenization
algorithm used by many popular lexer-generator tools such
as flex [47]. It gives us a bound on the amount of backtracking
that the algorithm performs, which in turn places a bound on
the running time. In particular, Lemma 12 states that if the
maximum token neighbor distance is bounded by k, then the
standard backtracking algorithm has running time O(k - n)
(in general, the worst-case time complexity is O(n?)).

3.1 Token Neighbor Distance

Let S C N be a subset of natural numbers. A number M € N
is said to be an upper bound of S if n < M for every n € S. The
subset S is called bounded if it has some upper bound. It is
called unbounded if it is not bounded. That is, S is unbounded
iff for every M € N there exists some n € N such that n > M.
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Definition 7 (Token Neighbor Distance). Let L C X*. We
will define the token neighbor relation > C X* X ¥* w.r.t. the
language L. We define u > v iff the following hold:

1. both u and v belong to L and are nonempty,

2. u < v (ie, uis a prefix of v), and

3. w ¢ L for every w with u < w < v (i.e,, for every w

that is a strict extension of u and a strict prefix of v).

A pair (u,0) € > is called a token neighbor pair. We also say
that u, v are neighboring tokens, and we define the distance
from u to v to be the length of u~lu. That is, we define

TkDist(u, 0) = |u" 0]

for u,v with u »» 0. The string u~1v is called the token
increment from u to v. We also define

TkDist(L) = sup DSet(L), where
DSet(L) = {TkDist(u,v) | u > v} and

sup is the supremum operator. In particular, the definition
says that TkDist(L) = oo when the set DSet(L) of token
neighbor distances is unbounded. We call TkDist(L) the max-
imum token neighbor distance for L.

Intuition: u »> v means that u, v are tokens (w.r.t. the
language L) so that u is a prefix of v and there is no other
token that is strictly between them (w.r.t. the prefix order).

Abbreviations: We sometimes write TND as abbreviation
for “token neighbor distance”. We also write max-TND to
abbreviate “maximum TND”.

Definition 8 (Maximum TND). Let 7 be a tokenization
grammar. We define TkDist(7) = TkDist(L(7)).

Example 9. In the table below, we list some tokenization
grammars and their maximum token neighbor distance.

grammar 7 TkDist(7)
1. [0-9]1|[ 1 0
2. [0-91+|[ 1+ 1
3. [0-91+(\.[0-91+)?|[ \.] 2
4.  [0-9]1+([eEI[+-1?[0-91+)?|[ 1+ 3
5. [0-91%0|[ 1+ (o)
6. ala*b|[ab]*[*ab] 00

For the first grammar, every token has length 1. This
means that u > o implies u = v for all u, v. It follows that
the max-TND is 0.

For the second grammar, the token neighbors (u,v) can
be of only two forms: (i) u matches [0-91+ and v = ux with
x being a decimal digit, or (ii) u matches [ 1+ and v = ux
with x being a space symbol. So, the max-TND is 1.

For the third grammar, we observe that the token neigh-
bors (u,v) with the longest increment u™'v are of the fol-
lowing form: u matches [0-91+ and v = u . x with x being a
decimal digit (e.g., 9 ™ 9.9). So, the max-TND is 2.

For the fourth grammar, the token neighbors (u,v) with
the longest increment satisfy: u matches [0-9]+ and v =
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// Input: grammar 7= [rg,...,re—1] and stream text

1 Function Tokenize (7 : List(Reg(X)), text : Stream(X)):

2 A « Tokenization DFA for 7

3 N startP « 0 // start position for token

4 while startP < text.len do // pass with backtracking
5

6

Option(N x T) tk < None // token found
S g « initial state of A  // current DFA state
7 N pos < startP // current position in stream
while pos < text.len do // left-to-right pass
// &: transition function of A
9 q — 5(q, text[pos])
10 pos < pos+1 // move to the next symbol
11 if g is final then
// A(q) is the preferred token id
12 tk « Some(pos — startP, A(q))
13 if q is a failure state then break
14 if let Some (¢, f) = tk then
// emit token to the output stream
15 emit (text[startP..startP + £], )
16 startP « startP+¢ // continue after token
17 else break

Figure 2. The standard DFA-based backtracking algorithm
for tokenization (see flex [47]).

uxyz, where x € {e, E}, y € {+, -}, and z is a decimal digit.
So, the max-TND is 3.

For the fifth grammar, note that ¢ »> ¢ 1@ for every
i > 0. It follows that the max-TND is oo.

For the sixth grammar, we observe that a >> aa’b for
every i > 0. So, the max-TND is co.

Lemma 10. Let L C X" and k € N. We have that TkDist(L) >
k iff there exist u, v such that the following hold: (1) u » v
(i.e., u and v are token neighbors w.r.t. L) and (2) |u~to| > k.

Lemma 11 (Dichotomy). Let L C ¥* be regular. Suppose
that m is the number of states of the minimal DFA that
recognizes L. Then, TkDist(L) = co or TkDist(L) < m + 1.

3.2 Bounding the Backtracking Distance

In this subsection, we briefly explore how the notion of token
neighbor distance may help us understand the performance
of the standard backtracking-based tokenization algorithm.
Fig. 2 shows the essence of this algorithm. The grammar is
an input argument for the procedure Tokenize. The outer
while loop (Line 4) performs one repetition for every token
that is identified. The variable startP keeps track of the start
position for the token that will be identified next. The inner
while loop (Line 8) reads the input symbols from left to right,
starting with position startP until the longest token for the
suffix text[startP..] is found.

We say that the algorithm of Fig. 2 backtracks because the
index pos that is used to read from the input string text can
move backwards. This can happen when a maximal token
is confirmed, which can trigger the execution of Line 16
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and then Line 7. These statements can result in pos being
decremented, which we refer to as “backtracking”.

The possibility of backtracking means that the Tokenize
algorithm of Fig. 2 can end up reading parts of the input
several times. This is a well-known source of inefficiency.
See, for example, [38]. In fact, the worst-case running time
of this algorithm is ©(n?), where n is the length of the input
text, for some tokenization grammars.

Lemma 12 below captures our observation that, if the max-
imum token neighbor distance is bounded, then the standard
backtracking algorithm is guaranteed to run in linear time
despite the worst-case quadratic time complexity in general.

Lemma 12. Let 7 be a tokenization grammar. Suppose that
TkDist(7) = k < oo. Then, the worst-case time complexity
of the algorithm Tokenize(7) (i.e., for fixed grammar 7) is
O(k - n), where n is the length of the input text.

The proof of Lemma 12 establishes that TkDist(7) < k
implies that the algorithm of Fig. 2 backtracks by at most k
positions on the input string. In particular, this means that
TkDist(7) < oo implies a uniform bound on the amount of
backtracking, which can be used to prove the O(k - n) upper
bound for the running time of the algorithm.

4 Static Analysis

Before we present our static analysis that computes the max-
imum token neighbor distance, as defined in Section 3, we
consider the complexity of the problem in Theorem 13 below.

Theorem 13 (Complexity Lower Bound). Let TOKENDIsT,
be the decision problem of checking whether a tokenization
grammar 7 satisfies TkDist(7) < 1 (i.e., it has max-TND at
most 1). TOKEND1sT; is PSPACE-hard.

Proof. We describe a reduction f from the universality prob-
lem for regular expressions to the problem TokENDI1sT;. Let
r be a regular expression over ¥. We will define the regu-
lar expression f(r) over the alphabet I' = ¥ U {0O0}. For the
definition of f(r) we distinguish cases, based on whether r
accepts the empty string ¢ or not.
(i) Case ¢ ¢ L(r): Define f(r) = Ojooo.
(ii) Case € € L(r): Define f(r) to be the regex that accepts
a string w if and only if (1) w is the empty string, or (2)
w ends with O, or (3) w ends with a symbol in ¥ and w|y
(remove all O occurrences) is in £ (r). The construction
of f(r) can be done with a straightforward recursive
algorithm that replaces each symbol a in r by O*aO".
The intuition for the construction is that the symbol O
triggers acceptance, but in its absence we consider the
original language (and ignore all O occurrences).
We will show now that r is universal iff f(r) € ToKENDIST;.
First, suppose that r is universal. Then, case (ii) applies and
f(r) is universal. Therefore, f(r) has max-TND at most 1.
Suppose now that r is not universal, which means that there
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// Input: tokenization grammar 7= [ry,..., Fee—1]
1 Function AnalysisMaxTND(7 : List(Reg(2))):
2 A « Tokenization DFA for 7
3 S «— {q | qis final and g = §(u) for some u € =*}
4 CoAcc «— {q | q is co-accessible, i.e., can reach a final state}
5 dist — 0 // (tentative) max-TND
6 while dist < | A| +2 do
7 T« {5(q,a)|qeSanda e}
8 if T N CoAcc = 0 then
// T contains no co-accessible state
// maximum token neighbor distance = dist

9 return dist

10 S «— {q € T | qisnot final}
1 dist « dist + 1
12 return oo

Figure 3. Static analysis: Computing the maximum token
neighbor distance TkDist(7) for a tokenization grammar 7.

existsastring x € X" suchthatx ¢ L(r).Ifx = ¢, then f(r) =
oO|oog, which has max-TND 2. So, f(r) ¢ TokeEnDisT;. It
remains to consider the case where x is non-empty, that is,
x = ya is in 3*. We claim that f(r) has max-TND at least 2.
Here is the witness: (1a) u = yO belongs to L(f(r)) because
it ends with O, (1b) v = yOaO belongs to L(f(r)) because
it ends with O, (2) u < v, and (3) yOa does not belong to
L(f(r)) because (yOa)|sx = ya ¢ L(r). Since |u~to| = 2, we
conclude that r has max-TND at least 2. O

With Theorem 13 we have established that the decision
problem ToxeENDi1sT; is PSPACE-hard. It follows that com-
puting the max-TND, which is a more general problem, is
computationally hard. We will proceed now to describe a
DFA-based algorithm for computing the max-TND of a tok-
enization grammar.

Let A be a DFA. A state g is accessible if it is reachable
from the initial state of A. We say that q is co-accessible if
there is a path from q to some final state of A.

Fig. 3 shows our proposed algorithm to compute TkDist(7)
for a tokenization grammar 7. Let L = £(7) and A be the
tokenization DFA for 7. The main idea behind the algorithm is
that it explores all paths in A that witness TkDist(L) > dist
for increasing values of dist, i.e., dist = 0,1, ..., |A| + 2. We
will continue to explain this idea.

Let k € N. Recall from Lemma 10 that TkDist(L) > k+ 1
iff there exist strings u, v such that u > v and |u™'0| > k+1.
This means that v is of the form v = u - a4, ... agars; - w,
where w € £* and g; € X for every i. The condition u » v
says that u € L,v € L, and uay...a; ¢ L for every i €
{1,2,...,k}. So, TkDist(L) > k + 1 iff there exists a path

uext a;

az as ak Afe+1
Qinit —>q —q1—> Q2 — 4k — Gk+1

in A (where ¢, is the initial state of A) such that q is
final, every g; is non-final for i = 1,2,...,k, and g4 is co-
accessible.
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Theorem 14 (Complexity Upper Bound). Computing the
maximum token neighbor distance for tokenization gram-
mars can be done in (deterministic) polynomial space.

Proof. First, consider the problem of checking TkDist(7) >
k + 1. Based on the earlier characterization in terms of the
existence of a path in the tokenization DFA, a nondeter-
ministic polynomial-space reachability algorithm (over the
potentially exponentially large DFA) can determine the ex-
istence of such a path. By Savitch’s theorem [41], there is a
deterministic polynomial-space algorithm for this problem.
Checking that TkDist(7) = k + 1 is the same as checking
that TkDist(7) > k + 1 and TkDist(7) # k + 2. So, this can
also be done in polynomial space. Finally, using Lemma 11
we see that computing TkDist(7) can be done in polynomial
space. O

Theorem 15 (Correctness of Static Analysis). Let 7 be a
tokenization grammar. The algorithm of Fig. 3 computes the
maximum token neighbor distance TkDist (7).

Proof. Let L = L(7) be the language of the tokenization
grammar and A = (Q, §, ginit, F) be the tokenization DFA
for 7. For every u € ¥*, u € Liff §(u) € F.

The correctness of the algorithm hinges on the following
loop invariant for the main while loop (starting at Line 6):

1. TkDist(L) > dist

2. dist < |A| +2

3. S contains a state q iff there exist a tokenu € LN Z*
and a string v € X% such that §(uv) = gand w ¢ L
for every w withu < w < uo.

First, we have to show that the loop invariant holds when
execution reaches the while loop. After Line 3 executes, S
contains a state q iff there exists a token u € L N ¥ such
that §(u) = q. Before entering the loop, we also have that
dist = 0. These two conditions imply Part (3) of the invariant
(choose v = ¢ and notice that the last part holds vacuously
because there is no w with 4 < w < uo). Part (1) and Part (2)
of the invariant are easily seen to hold because dist = 0.

Now, we continue to establish that the body of the loop
preserves the loop invariant. After Line 7 executes, we have:

4. T contains a state q iff there exist a tokenu € LNX*, a
string v € %" and a letter a € ¥ such that §(uva) = q
and w ¢ L for every w with u < w < uo.

We will focus now on the test “T N CoAcc = 0” that is per-
formed in the conditional starting at Line 8. First, we exam-
ine the case T N CoAcc # 0 where the test fails. This means
that there is a state ¢ € T N CoAcc, i.e., ¢ € T and q is co-
accessible. From g € T and Property (4) we get that there
existu € LNX*, v € 2% and a € ¥ such that §(uva) = g and
w ¢ L for every w with u < w < uo. Since q is co-accessible,
it follows that §(g, z) € F for some string z € X* of minimal
length (minimality here means that 5(q,z’) ¢ F for every
strict prefix z’ of z). So, §(uvaz) = §(6(uva),z) = 8(q,z) € F
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Example 16 Example 17
_dist 0 1 23  dis 0 1 2 6 7
S 2 1 1 1
3 45 S 2 1 1 1
6 3 4 4 4
T 1 1 1 1 T 1 1 1 1
2 56 return
3 & 2 3 3 3 00
4 3 4 4
6 4
test ff ff ff tt test £ £ £ ... &

Figure 4. Execution traces of the static analysis algorithm.

and hence uvaz € L. From all these facts, we obtain that
u > uvaz, i.e., u and uvaz form a token neighbor pair. No-
tice that TkDist(u, uvaz) = |vaz| > dist + 1. We obtain that

5. TkDist(L) > dist + 1.

If the test of the conditional succeeds, i.e., T N CoAcc = O we
obtain that it cannot be that TkDist(L) > dist + 1. Therefore,
TkDist(L) < dist. Using Part (1) of the invariant, we conclude
that TkDist(L) = dist and therefore the algorithm correctly
returns with the value dist at Line 9.

We will now consider the execution after the conditional,
that is, when Line 10 is reached. The variable S is updated to
include those states of T that are non-final. We thus obtain:

6. S contains a state q iff there exist a tokenu € LN Z*
and a string va € 29! such that §(uva) = q and
w ¢ L for every w with u < w < uva.

The next statement increments dist by 1, and we conclude
that the loop invariant holds at end of the body of the loop.

After the main loop terminates, we know that the invariant
holds. Since the loop guard has failed, we also know that
=(dist < |A| + 2), i.e., dist > |A| + 2. Using Part (2) of the
invariant, we obtain that dist = | A| + 2. Then, using Part (1)
of the invariant, we see that TkDist(L) > |A| + 2. Lemma 11
implies that it must be TkDist(L) = oo. So, the algorithm
correctly returns oo at the end. O

Complexity of Static Analysis. Let M be the size |A| of
the DFA for the tokenization grammar. The running time
of the analysis is dominated by the execution of the while
loop. First, notice that the loop executes O(M) times, where
M is the number of DFA states. Every repetition of the loop
involves computing the set of successors of S and performing
the check T N CoAcc. Using the appropriate data structures
to represent S, T, and CoAcc (e.g., CoAcc can be kept as a
Boolean array with M entries), the amount of work per-
formed in a loop repetition is O(M). So, the running time of
the analysis is O(M?).
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Example 16. Consider [0-9]+([eE][+-]1?[0-91+)?|[ 1+, which
has max-TND 3 (see Example 9). Below, we show the tok-
enization DFA, where o = [%0-9eE] and 7 = ["0-9+-1.

The execution trace of the static analysis algorithm (Fig. 3)
for this grammar is shown in Fig. 4 (left). The row labeled
with “test” refers to the condition “T N CoAcc = 0” that is
checked by the algorithm. Note that the set of co-accessible
states of the automaton is CoAcc = {0, 2, 3, 4,5, 6}. In line 3,
we initialize S to all reachable final states, which is {2, 3,
6}. At the first iteration of the loop, we compute T to be the
set of all successors of states in S. The successors of state
2 are 2 and 1; the successors of state 3 are 3, 1, and 4;
and the successors of state 6 are 6 and 1. So, T is set to be
{1,122, 3,4, 6}. Since T intersects CoAcc, execution continues
to line 10. At this point, S is updated to contain the non-final
states of T, i.e., S = {11, 4}. Moreover, dist is updated to 1.
The loop execution continues in the same manner until
dist becomes 3, in which case the only state left in S is the
rejecting state 1. The only successor of 1 is 1, so T also
becomes {1}. Now, since T N CoAcc = 0, we return dist = 3.

The path witnessing TkDist(L) > 3 is
0—[0-91 g _ [eEl , _, [+1 5 _,[0-9]

The transitions are annotated with character classes o, be-
cause for any letter choice we get a witnessing path.

Example 17. Consider [0-91%0|[ 1+, which has max-TND co
(Example 9). We show the tokenization DFA for the grammar:

The execution trace of the static analysis algorithm (Fig. 3)
for this grammar is shown in Fig. 4 (right). Initially, S =
{2, 3} consists of all reachable final states. The successors
are T = {1,2,3,4}. Since CoAcc = {0, 2, 3,4}, we have
T N CoAcc # 0.

For dist = 1, we get S = {1, 4} by filtering out the final
states in T. Taking the successors of each state in S, we
update T = {1, 3,4}, which has a nonempty intersection
with CoAcc. Then, we notice that the execution stabilizes in
the sense that S and T no longer change. However, as soon
as dist becomes 7, the loop guard at line 6 of Fig. 3 fails, and
we jump to line 12 to return co.
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// Input: grammar 7 with TkDist(7) < 1 and stream text
1 Function Tokenize (7 : List(Reg(2)), text : Stream(Z)):

2 A « tokenization DFA for 7

3 T « token-extension table for A

4 N startP « 0 // start position for token

5 N pos« 0 // current position in stream

6 S q « initial state of A // current DFA state

7 while true do // left-to-right pass, no backtracking

// 8x: transition function of A

8 q < Sa(q, text[pos])

9 pos < pos+1 // move position to the next symbol

10 if T[q][text[pos]] then // check for maximal token
// A(q) is the preferred token id

1 emit (text[startP..pos], A(q))

12 startP < pos // start position for next token

13 q <« initial state of A

Figure 5. Tokenization for max-TND at most 1.

We discussed in Example 9 that this grammar has max-
TND oo because 0 »> 010 for every i > 0. In fact, these
tokens correspond to paths in the automaton of the following
1 T4 50 .30 441 4,03

form:0 »% 3 514>

5 Efficient Streaming Tokenization

The previous section has presented a static analysis that
computes the maximum token distance of an arbitrary tok-
enization grammar. In this section, we propose an efficient
streaming tokenization algorithm that is applicable to gram-
mars with bounded max-TND. We call our algorithm Stream-
Tok. It has time complexity O(n), where n is the length of
the input stream. We will start by examining the simple case
of max-TND 1. Then, we will delve into the more general
case where the max-TND is any number K < oco.

5.1 Streaming Algorithm for Token Distance 1

Now, we study the case where the maximum token neighbor
distance is 1. E.g., the grammar [0-9]+|[ ]+ has max-TND 1.

Let 7 be a tokenization grammar with TkDist(7) = 1 and
A be its tokenization DFA. Suppose that the execution of
A over the input string reaches a final state q. There are
two possibilities for the matched token u: (1) it is a maximal
token, or (2) its extension ua with the next symbol a is also a
token, which means that u is not maximal. In order to make
this distinction, we pre-compute a table T, which is indexed
by the states of A and the symbols of the alphabet. We call
T the token-extension table for A. For a state q of A and a
symbol a € 3, we define T[q][a] = true iff (1) g is final and
(2) 8(q, a) is not final.

The algorithm of Fig. 5 performs a simulation of the execu-
tion of the tokenization DFA A. The difference here is that
we check in line 10 whether we have identified a token (i.e.,
the current state is final) that is maximal (i.e., it cannot be
extended to a longer one). When a maximal token is found,
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the algorithm emits a token to the output stream. The output
pair includes both the substring that constitutes the token,
as well as its token identifier. The algorithm then proceeds
to restart A from its initial state in order to tokenize the rest
of the input stream.

Example 18. Consider the grammar [e-91+|[ 1+, which we
have seen in Example 5 and Fig. 1. It has max-TND 1, and we
can apply the algorithm of Fig. 5. For ease of presentation,
we consider character classes for the token-extension table
instead of individual characters. The token-extension table
T has two true entries: T[2][[» 1] and T[3][ [*e-91]. We
have T[2][[* 1] = true because, once we have a token
matching the rule [ 1+ and are therefore in the final state
2, seeing a non-space character ([* 1) next ensures that the
token cannot be extended and should be emitted.

To illustrate the execution of the algorithm in Fig. 5, con-
sider the input text 12 (as the prefix of some input stream).
When the tokenization DFA (shown in Fig. 1) reads 1 and
reaches the final state 3, we look up the table entry T[3][ 2],
which is false. Thus, we know that the token 1 is not max-
imal. After reading the next character 2, the current DFA
state remains 3. The table entry T[3][ . ] is true, which
means that the token 12 found so far is maximal and should
be emitted.

The algorithm of Fig. 5 has the argument text, which is the
input stream of alphabet symbols. Even though our program-
ming syntax allows random access into text, the algorithm
only performs a left-to-right pass over text (pos gets incre-
mented at every step). So, our syntax can be easily translated
into a more pure syntax for streaming algorithms.

The main work that the algorithm performs are table
lookups for the transition (§.#) and for checking whether we
have a maximal token (T). So, we perform O(1) work per in-
put symbol. It follows that the algorithm has time complexity
O(n), where n is the length of the input stream.

5.2 StreamTok: General Streaming Tokenization

Let 7 be a tokenization grammar. We will now describe a
streaming tokenization algorithm, which we call StreamTok,
for the case where TkDist(7) = K < co. The main idea is that
determining whether an identified token is maximal requires
information about the K characters that lie ahead.

Let A be the tokenization DFA for 7. A token-extension
path r in A is a sequence

aip a as k-1 akx
q—q — G2 — " ——>qk-1 Gk

where k > 1, q and g are final, and every g; with i =
1,...,k — 1is non-final. Our assumption TkDist(7) = K im-
plies that k < K. We define fst(s) = g to be the first state of
the path  and label(7) = aja; . .. ai to be the string that can
be read from the path. Let TePaths(:A) be the set of all token-
extension paths in A. Let TeNFA(A) be the NFA that recog-
nizes the finite set of regular expressions {pad(label(r)) |
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// Input: grammar 7 with TkDist(7) = K < oo and stream text
1 Function Tokenize (7 : List(Reg(X)), text : Stream(X)):

2 A « tokenization DFA for 7
3 B « token-extension DFA for A
4 T « token-maximality table for A and 8
5 N startP < 0 // start position for token
6 (S q, SS) « (initial state of A, initial state of B)
7 for pos=0,1,..., K-1do// traverse first window (size K)
8 ‘ S «— 85 (S, text[pos]) // Sg: transition function of B
9 Npos« 0 // start position for stream
10 while true do // left-to-right pass without backtracking
1 S « 6g(S, text[pos+K]) // B is K symbols ahead of A
12 q — Oa(q, text[pos]) // Sa: transition function of A
13 pos < pos+1 // move position to the next symbol
14 if T[q][S] then // check for maximal token

// A(q) is the preferred token id
15 emit (text[startP..pos],A(q))
16 startP « pos // start position for the next token
17 q « initial state of A

Figure 6. Streaming tokenization when TkDist(7) = K < co.

€ TePaths(A)}, where pad(aiaz...ar) = aiaz...ax -
%K=k The idea is that the pad function “pads” the string
aay...ai with K — k character classes ¥ (to accept any
character) so as to reach length exactly equal to K. We call
TeNFA(A) the token-extension NFA for A. Every state s of
TeNFA(A) is associated with a specific path z of TePaths(A),
and we define the label A(s) = fst(r), which records the first
state of the path. The token-extension DFA for A, denoted
by TeDFA(A), results from TeNFA(A) by using a modified
powerset construction that, informally, “restarts” the NFA
at every step. Every state S of TeDFA(A) corresponds to a
subset of states of TeNFA(A).

Fig. 6 shows our streaming tokenization algorithm for
grammars with bounded max-TND, which uses the token-
extension DFA described above. The token-extension DFA
B = TeDFA(A) can be used to compute some information
about the K characters that lie ahead of the current posi-
tion for tokenization. This can be easily implemented by
executing the tokenization automaton A with a delay of K
characters relative to B (see lines 11-12 of Fig. 6). Then, we
can use the current states of ‘A and B to check whether a
maximal token has been found. To elaborate on this, sup-
pose that the execution of A ends up at some final state g,
which means that we have just found a token u (i.e., sub-
string that matches the grammar). The token u is maximal
iff the next few characters (at most K of them) cannot extend
it to a longer token. This can be checked by considering the
current state S of 8. Notice that 8 is exactly K characters
ahead of A, so it has already seen the characters that could
potentially result in an extension. There is an extension of u
iff the DFA state S (“powerstate”) is final and contains some
NFA state s such that A(s) = q. This condition says that there
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is a token-extension path starting with q that uses at most
K of the characters that follow.

Based on the observations of the previous paragraph, we
see that we can pre-compute a table T that tells us whether
we have a maximal token based on the current state g of
A and the current state S of 8. We call this the token-
maximality table (for A and B) and we define T[q][S] =
true iff (1) g is final and (2) there exists no token-extension
NFA state s € S such that s is final and A(s) = q. In particular,
line 14 of Fig. 6 performs this check: if T[q][S] is true, then
we know that the token is maximal and we emit it.

Note: since the token extension paths may share vertices,
the token-extension paths are stored in a compact data struc-
ture in our implementation, which takes advantage of shar-
ing. In fact, this data structure can be directly used to build
the TeDFA without an explicit enumeration of the paths.

Example 19. Consider the grammar [0-91+(\.[6-91+)?|[ \.].
Its tokenization DFA A is shown below. We know from Ex-
ample 9 that this grammar has max-TND 2.

@
LA [*0-9 \.] ‘
—(0) —(D)

[*0-9\.]

[*0-9] Lo

2 50 [0-9]
\. ~ [e-97 ©

il [0-9]

Observe that TePaths(A) contains the following three paths:

[0-9] \. [0-9] [0-9]
33— 3 3—4—>5 5—— 5

We construct TeNFA(A) as shown below. We pad the shorter
paths with the character class that accepts any character
(denoted . in PCRE notation). Observe the close correspon-
dence between TeNFA(A) and TePaths(:A). We color each
state in the token-extension NFA based on the first state of
each token-extension path, in order to reflect the label of
each state in TeNFA(A). In particular, states s, s4, 57, S2, Ss,
and sg are labeled with state 3 of the original tokenization
DFA A; and states s3, sg, So are labeled with state 5 of A.

[0-9]

Applying a modified powerset construction to TeNFA(A)
above, we obtain TeDFA(A) as shown below. In particular,
the token-extension DFA has the states S;, ..., Ss. We view
each of these DFA states as a set of NFA states in TeNFA(A).
In particular, S; = I = {sy, s2, s3} is the set of initial states of
TeNFA(A). We also have Sy = {s4, 86} UL, S3 = {ss} UL, S; =
{34, S65 57, 59} U I, 55 = {35, S7, Sg} U I, and 56 = {34, S65 Sg} Ul
Note that we take the union of each constructed subset with
I (i.e., the set of the initial states in TeNFA(A)) to simulate
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“restarting” the NFA at each step.

[0-9]
(S2) (S re-91

As a simple illustration of the algorithm in Fig. 6, consider
the input text 1.4.. (as the prefix of some input stream).
The first maximal token to be emitted is 1.4. Note that dur-
ing execution, TeDFA(A) is two input characters ahead of
A because the max-TND is K = 2. Thus, when A reads
the first character 1 and reaches a final state 3, the token-
extension DFA TeDFA(A) has seen 1.4 and reached state
Ss. We know that Sg = {sy, s2, 53, S4, S¢, S3 }, Where sg is final
and is associated with state 3. This means that T[q][S] =
T[3][S¢] = false, and therefore 1 is not a maximal token.
When the tokenization DFA A sees 1.4 and reaches the final
state 5, the token-extension DFA has seen 1.4.. and reached
S3 = {s1, 52, 53, 55 }. None of sy, so, s3 and s is final, therefore
T[q][S] = T[5][Ss] = true and the token 1.4 is maximal.

The tokenization algorithm of Fig. 6 requires a bounded
buffer of size K, because the automaton 8 is K symbols ahead
of the automaton (A. This means that the symbols from the
input stream have to be delayed by K steps for A, and a
buffer of size K can implement this delay.

Theorem 20 (Correctness). The algorithm of Fig. 6 per-
forms maximal-munch tokenization for every grammar 7
with TkDist(7) = K < oo.

Proof. Let A be the tokenization DFA and 8 = TeDFA(A).
The correctness of the algorithm relies on the following in-
variants for the main tokenization loop that starts at Line 10:

1. startP < pos

2. the prefix text[0..startP] has been correctly tokenized

3. each strict prefix of text[startP..pos] is not a maximal
token

4. q = d 7 (init ¢, text|[startP..pos])

5. S = dg(initg, text[pos..pos + K])

We will examine the case where text[startP..pos] is a maxi-
mal token. The case where it’s not a maximal token can be
handled similarly, using the fact that the non-maximality of
the token is witnessed by some extension text[pos..pos + k]
with k < K = TkDist(7) (i.e., of length < K).

Since text|[startP..pos] is a token, it must be the case that
q is final. S is the state of the DFA 8 = TeDFA(A), which
is constructed from TeNFA(A) through the (modified) pow-
erset construction we described earlier. So, we can view it
as a “powerstate”, i.e., a set of states of TeNFA(A). Since
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text [ startP..pos] is maximal, there exists no extension
text[startP..pos + k|

that is a token (i.e., belongs to the language of the grammar).
Now, we claim that T[q][S] = true. Assume for the sake
of contradiction that T[q][S] = false. Since we already
know that q is final, it must be (from the definition of the
token-maximality table T) that there exists some TeNFA(A)
state s € S such that s is final that A(s) = g. By the def-
inition of TeNFA(A), this implies that there exists some
token-extension path 7 in A that (i) starts with ¢ and (ii)
is labeled with some nonempty prefix text[pos..pos + k] of
text[pos..pos + K] (i.e., k < K). But this means that

text[startP..pos] - text[pos..pos + k| = text[startP..pos + k]

is a token, contradicting the maximality of text[startP..pos].

We have thus established that T[q][S] = true. We can see
in Line 14 that the algorithm proceeds to correctly identify
text[startP..pos| as a maximal token and to appropriately
update the value of the index startP. The preservation of the
invariants follows from these observations. O

Time Complexity. The algorithm performs three table
lookups (84, dg, and T) for each symbol of the input stream.
This means that the time per symbol is O(1). So, the total
time is O(n), where n is the length of the input stream. In
contrast to our algorithm, the backtracking algorithm of
flex has time complexity ©(mn), where m is the size of the
tokenization grammar. This is because, in the worst case, it
may have to backtrack by m steps for every symbol of the
input stream. In our experimental results of §6 (see Fig. 8),
we see the dependence of flex’s running time on m.

Memory Footprint. The StreamTok algorithm has a small
memory footprint for typical tokenization grammars. The
DFAs A, B, and the table T have sizes that are independent
of the stream length. A buffer of size K (max-TND) is needed
to implement the delay. For practical workloads, the memory
footprint of StreamTok is in the order of kilobytes.

6 Experiments

We have implemented the static analysis algorithm of Fig. 3
and the StreamTok algorithm for streaming tokenization
(Fig. 6) in Rust. In this section, we describe experiments we
have conducted to answer the following research questions:

(1) What is the maximum token neighbor distance of tok-
enization grammars that are used in practice?

(2) Is our static analysis algorithm (Fig. 3) sufficiently effi-
cient for analyzing real-world grammars?

(3) Is the performance of StreamTok competitive against
state-of-the-art lexers/tokenizers?

(4) How do the input stream buffer size and the average
token length influence tokenization performance?

(5) What is the performance benefit that StreamTok offers
to high-level real-world applications?
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Table 1. Max-TND for data exchange formats and program-
ming/query languages.

NFA/Grammar Size | DFA Size | Max-TND

JSON 32 34 3
CSv 8 9 1
TSV 5 7 2
XML 36 32 6
C 310 263 o)

R 141 100 [
SOL 504 398 00

(6) What are the tradeoffs between StreamTok and the of-
fline tokenization algorithms of [29] (OOPSLA’25)?

Experimental Setup. The experiments for RQ1 and RQ2
were conducted on a Linux server equipped with an Intel
Xeon E5-2640 v4 CPU clocked at 2.40 GHz and 128 GB of
RAM. The experiments for the rest of the RQs were con-
ducted on a Linux workstation with an AMD EPYC 7252
8-core processor at 3.10 GHz and 256 GB of RAM.

RQ1: Analysis of Real-world Tokenization Grammars

Our goal here is to understand whether tokenization gram-
mars used in practice are amenable to streaming tokeniza-
tion with StreamTok. So, we collect and analyze (using our
algorithm of Fig. 3) grammars for standard formats and pro-
gramming/query languages and grammars from GitHub.

Data Formats & Programming Languages. We have
executed our static analysis on the tokenization grammars
of popular data exchange formats: JSON (JavaScript Ob-
ject Notation) [5], CSV (comma-separated values) [42], TSV
(tab-separated values) [22], and a subset of XML (Extensible
Markup Language) [2]. Table 1 shows the results of our static
analysis. Table 1 includes the results for tokenization gram-
mars used in parsers for the popular programming languages
C, R, and SQL. These grammars are more complex compared
to the data formats: the NFA and DFA sizes are larger, and
max-TND is infinite. We will not consider grammars of pro-
gramming languages in our evaluation of StreamTok (RQ3
to RQ6), because program parsing involves small source files
that do not need to be tokenized in a streaming fashion.

It is no surprise that simple formats such as CSV and
TSV have smaller automata sizes than JSON and XML. We
also notice that JSON, CSV, TSV, and XML have bounded
max-TND and are therefore suitable for streaming tokeniza-
tion. The variant of the CSV tokenization grammar that uses
the rule "([*"1|"")*" for quoted fields (as per the RFC [42])
has unbounded max-TND. The set of token neighbor pairs
{mm > mmmgn sy mhnggn nn sy Miigagt 1 witnesses
this fact. The string "" is the empty quoted field. The first
quote in the string """ is the opening quote of the field, and
the next two quotes form an escape sequence that represents
a single quote character. In our CSV grammar variant (with
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max-TND 1), we use the rule "([*"]|"")*"? instead, which
makes the closing quote optional. Our variant has the same
behavior for syntactically well-formed CSV documents. We
can easily confirm well-formedness of a quoted-field token
by checking that it contains an even number of " symbols.

GitHub-sourced Grammars. To obtain a large collec-
tion of real-world grammars, we have randomly sampled
grammars that are available in public GitHub repositories.
We have also performed de-duplication of the downloaded
grammars, as there are cases where the same grammar is
used across several repositories. We have created a dataset of
2669 grammars. Fig. 7 shows the results of our analysis. The
size of a grammar is taken to be the number of states of its
NFA. About 81% of the collected grammars are of size at most
100. Fig. 7a shows the histogram that visualizes the distribu-
tion of grammar sizes at most 100. In particular, grammars
of size less than 20 are the most prevalent. The largest gram-
mar in our dataset is of size 2496. As reported by our static
analysis, 32% of the grammars have unbounded max-TND.
Among the grammars with bounded max-TND (68%), 53%
have max-TND 1, making up 36% of the entire dataset. Fig. 7b
visualizes the distribution of max-TND over the collected
grammars. Most grammars with bounded max-TND have
max-TND at most 4. There are 8 outliers (i.e., grammars with
bounded max-TND greater than 20) that are not shown. The
largest bounded max-TND we observe is 51. We also explore
the relationship between DFA size and NFA/grammar size,
which is shown in Fig. 7c. For our dataset, this relationship
can be decently approximated by a linear regression, with
only a few prominent outliers. In theory, the size of the DFA
can be exponential in the NFA size. Our data set suggests
that such a blowup is uncommon in practice.

Summary of RQ1: About two-thirds of the tokenization
grammars in our GitHub-sourced dataset have bounded max-
TND. Popular data exchange formats can be tokenized using
grammars with bounded max-TND.

RQ2: Performance of Static Analysis

Fig. 7d shows the execution time of our static analysis (aver-
age across several trials) w.r.t. grammar size. The variance
in execution time is negligible and therefore not visible in
the plot. Both axes are in logarithmic scale, and we observe
that the running-time growth of our algorithm w.r.t. gram-
mar/NFA size is roughly polynomial. This empirical obser-
vation is consistent with the asymptotic complexity of the
algorithm. Recall that the algorithm of Fig. 3 is quadratic
w.r.t. DFA size. We also see in Fig. 7c that the relationship
between DFA and NFA/grammar size is roughly linear for
our dataset. So, the algorithm of Fig. 3 could appear to be
quadratic in NFA/grammar size, which is consistent with the
plot of Fig. 7d. More specifically, 88.7% of the grammars are
analyzed in under 1 ms; 97.9% in under 10 ms; 99.4% in un-
der 100 ms; and 99.96% in under 1 sec. The most challenging
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Figure 7. Analysis results for our GitHub-sourced dataset of tokenization grammars.

grammar in the dataset has size 48, its DFA has size 10703,
and our tool takes 3.38 seconds to analyze it.

Summary of RQ2: The worst-case polynomial time com-
plexity of our static analysis is consistent with our experi-
mental observations. Our analysis executes in under 100 ms
(resp., 1 sec) on 99.4% (resp., 99.96%) of the grammars, so it
is suitable for practical use.

RQ3: StreamTok Performance Against Existing Tools

We evaluate the performance of StreamTok against existing
lexers/tokenizers. We consider both (i) synthetic instances to
explore the worst-case behavior of the tools, and (ii) realistic
instances to investigate performance for practical workloads.

Baseline Tools. For the experimental comparison against
StreamTok, we consider the following baseline approaches:
flex [47], the algorithm of Reps [38], Rust nom [12], Rust
plex [44], Rust regex [14], and ExtOracle [29]. The lexer gen-
erator flex [47] produces a C implementation of the DFA-
based backtracking algorithm that we described in Fig. 2.
Even though our pseudocode description is not streaming
(for the sake of simplicity), flex explicitly supports streams.
It can process an input stream (read with system calls to the
OS) in a block-by-block fashion. It tokenizes one block as
much as possible before moving on to processing the next
block. The other tools either do not explicitly support stream-
ing input or they have semantic differences from maximal-
munch tokenization. For this reason, we consider flex to be
the most suitable baseline for comparing with StreamTok.
The tokenization algorithm of Reps [38] builds upon flex’s
algorithm by adding a memoization table that helps avoid
excessive backtracking. Since StreamTok is implemented in
Rust, we also consider the Rust libraries nom [12], plex [14],
and regex [14]. These libraries do not provide support for the
streaming setting, which raises two issues: (i) the user has the
additional burden of writing code for block-by-block stream
processing, and (ii) tokens can straddle the boundaries of
stream blocks, an error-prone situation that the user might
handle incorrectly. The Rust crates nom and regex do not
target the maximal-munch tokenization problem as they per-
form greedy matching, but we have been able to encode our
benchmark tasks with them. For example, Rust::regex uses
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Token neighbor distance Token neighbor distance (k)

Figure 8. RQ3: Performance comparison on the family of
grammars 7, = (a{0,k}b) |a with TkDist(7) = k. StreamTok
and ExtOracle have ©(1) time-per-symbol, i.e., independent
of k. For other tools, time-per-symbol is O (k).

the greedy (PCRE) semantics for disambiguation [13, 19],
which does not always coincide with the maximal-munch se-
mantics [32]. The tokenization algorithm ExtOracle [29] is
inherently offline and therefore cannot be used with stream-
ing input. To run ExtOracle, the entire input data has to be
first loaded in memory, which can make it impractical in the
streaming setting.

Microbenchmark: Worst-case Behavior. We consider
the family of grammars 7, = (a{0,k3b) |a with TkDist(7) =
k. That is, the parameter k is the max-TND of the grammar
7. Also notice that the size m of the grammar is linear in k
(bounded repetition is treated as an abbreviation). We use
a 10 MB input string consisting of only a letters. We know
that flex backtracks by k characters for each input symbol,
which means that it has ©(k) time-per-symbol complexity.

In Fig. 8, we see the results for all tools. The left plot
shows the execution time w.r.t. k. Notice that StreamTok and
ExtOracle have constant (w.r.t. k) running time. For all other
tools, the running time is proportional to k. The right plot
shows the throughput of the tools w.r.t. k. StreamTok and
ExtOracle have constant throughput. For the rest of the tools,
throughput drops substantially as the max-TND k increases.
The main observation is that the performance of all prior
streaming tokenization approaches can degrade for certain
difficult instances. The performance of StreamTok is robust
w.r.t. the choice of tokenization grammar.
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Figure 9. RQ3: Tokenization time for textual data formats.

Practical Workloads. In addition to common data for-
mats (JSON, CSV, TSV, and XML), we also include grammars
for tokenizing YAML, FASTA, and DNS zone files. YAML [37]
(max-TND 2) is an extension of the JSON format that uses
indentation to enhance the human readability of documents.
FASTA [36] (max-TND 1) is a textual format that is used to
encode protein and DNA sequences in bioinformatics ap-
plications. We also include a tokenization grammar for log
files (max-TND 1) stored under the directory /var/logs/ of
Linux. In RQ5, we discuss more log parsing applications and
how they benefit from StreamTok. DNS zone files [33] (max-
TND 1) include DNS records that are separated by newlines
and whitespace that follow the definitions in RFC 4034 [40].

Fig. 9 shows the running time of StreamTok and all base-
line tools for the previously-described formats. There is a
plot for each data format. All grammars have bounded max-
TND. In each plot, the horizontal axis is the length of the
input stream (in MB = 10° bytes) and the vertical axis is the
execution time (in seconds). The plots of Fig. 9 show that
all tools exhibit linear-time behavior (w.r.t. stream length)
across all workloads. Fig. 10 shows the throughput for each
tool and workload. We notice that StreamTok outperforms
all other tools. The second fastest tool is ExtOracle, but it is
offline. As mentioned earlier, flex [47] is the only tool (apart
from StreamTok) that truly supports streaming tokenization
and is therefore the most suitable baseline for our perfor-
mance comparison. It can be seen in Fig. 10 that StreamTok
is 2-3 times faster than flex.

Summary of RQ3: StreamTok is asymptotically faster
than prior streaming tokenizers and there are grammars for
which this is reflected in tokenization performance (Fig. 8).
StreamTok outperforms other tokenizers on practical work-
loads involving various data formats (Fig. 9). It is 2-3 times
faster than flex, which is a popular lexer generator with
explicit streaming support (Fig. 10).

RQ4: Impact of Buffer Size and Token Length

We identify two parameters in the streaming setting that
can affect performance, namely buffer capacity (for the input
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Figure 11. RQ4: Examine different buffer and token sizes.

stream) and average token length. Flex is the only existing
tool among all considered ones that is inherently streaming.
Hence, in this section, we only consider flex and StreamTok.

Effect of the Input Stream Buffer Capacity. For stream-
ing tokenization, buffer capacity matters to both the perfor-
mance and latency, as the input stream is delivered chunk-
by-chunk to the tokenizer. Whenever we refill the buffer, we
need to perform a read system call and move any unpro-
cessed input from the end of the buffer to the start. Thus, if
the buffer is too small, this overhead becomes significant and
negatively affects the throughput. However, a larger buffer
causes higher latency and uses more memory. Therefore,
there is a tradeoff between throughput and latency.

Fig. 11a examines different buffer capacities for JSON and
CSV using flex and StreamTok. The performance improves
as the buffer increases to 64 KB and it plateaus beyond this
buffer size. Therefore, we conclude that 64 KB is the most
suitable buffer capacity, which also aligns with the default
Unix pipe buffer capacity.

Effect of Token Length. We investigate the relationship
between average token length and tokenization performance.
Fig. 11b shows the results for tokenizing CSV and JSON
with flex and StreamTok. The input stream buffer capacity is
64 KB. When the tokens are shorter, the tokenization perfor-
mance drops. This happens because token generation (and
consumption) requires additional work to be performed.



ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Summary of RQ4: A buffer capacity of 64KB is a good
choice for StreamTok. The number aligns with the Unix pipe
buffer capacity. In addition, we observe that streams with
shorter tokens result in reduced performance.

RQ5: Higher-level Applications that Use Tokenization

Tokenization is typically part of a larger pipeline that imple-
ments a higher-level application. We consider here several
such applications to demonstrate that optimizing tokeniza-
tion is worthwhile.

Log Parsing. Computing systems employ logging to record
runtime information that can be used later for analysis and
debugging. Logs are typically lists of events, and they are
presented as loosely structured text. Log parsing is the task
of converting raw logs into a semi-structured representation
that is more suitable for further processing. Due to their
simplicity, the parsing of logs can be performed with just
a tokenizer, without using complex stack-based parsing al-
gorithms. There are settings where the timely analysis of
logs demands the use of a streaming log parsing technique.
Even in cases where log events are batched in files, stream
processing can be essential when the log files are too large to
load in memory, or they are fed to pre-processing pipelines
(e.g., decompression, filtering, etc.) that generate streams.

We consider commonly used log formats, including An-
droid, Apache HTTP Server, and Linux. For each log format,
we have handcrafted a suitable tokenization grammar that
can tokenize real logs from LogHub [50] and Kaggle [21].

We investigate whether tokenization takes up a signifi-
cant amount of time in log parsing, and whether we can
reduce the running time by using StreamTok. We consider
the computational task of converting raw logs into a semi-
structured TSV representation. Table 2 shows the execution
time when flex or StreamTok are used to tokenize. We ob-
serve that StreamTok is substantially faster than flex. Most
importantly, the use of StreamTok instead of flex gives a 2.5%
to 3.1X speedup for the overall log-to-TSV application.

Format Conversions and Validation. Tokenization is
an important part of implementing format conversions and
data validation. Format conversions are common in data mi-
gration, and data validation is crucial for ensuring that data
is of an appropriate form before it is processed. For format
conversions, we consider CSV to JSON, JSON to CSV, JSON
minification, JSON to SQL, and SQL loads. JSON minification
refers to the removal of unnecessary whitespace from a JSON
file. JSON to SQL refers to creating SQL commands that load
a JSON file into a database. SQL loads refer to loading SQL
migration files that consist of SQL INSERT INTO statements.
For validation, we consider CSV schema inference and val-
idation. CSV schema inference refers to inferring the data
type for each column (we implement inference that agrees
with the csvstat tool provided in csvkit [20]). CSV validation
is about validating that the CSV file contains columns of
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Table 2. RQ5: Application speedup when using StreamTok
instead of flex. The columns ‘flex’ and ‘StreamTok’ give to-
kenization times (in seconds). The column ‘rest’ gives the
time (in seconds) spent processing the token stream.

Application flex StreamTok  rest speedup
Android 0.249 0.081 0.003 2.98
Apache 0.138 0.054 0.001 2.52
BGL 0.299 0.091 0.015 2.95
Hadoop 0.321 0.113  0.008 2.71
HDFS 0.271 0.082  0.008 3.10
Linux 0.180 0.064 0.003 2.74
Mac 0.283 0.093  0.004 2.97
Nginx 0.482 0.172  0.016 2.65
OpenSSH 0.174 0.064 0.005 2.61
Proxifier 0.204 0.067  0.005 2.89
Spark 0.161 0.056  0.005 2.71
Windows 0.230 0.085 0.003 2.64
JSON to CSV 4.55 1.40 0.16 3.02
JSON Minify 4.55 0.73 0.14 5.39
CSV to JSON 2.06 0.60 0.50 2.33
CSV Schema Validation ~ 2.06 0.646  0.014 3.14
CSV Schema Infer 2.06 0.65  0.04 3.04
JSON to SQL 4.55 1.40 0.67 2.52
SQL loads 3.91 1.10 0.61 2.64

specified data types. We observe in Table 2 that tokeniza-
tion is a significant part of the total execution time in all
applications. For example, for JSON minification, it takes
4.55 + 0.14 = 4.69 s to minify a JSON file with flex, but only
0.73 +0.14 = 0.87 s with StreamTok. So, JSON minification is
5.39% faster when StreamTok is used instead of flex.

Summary of RQ5: Tokenization is a significant part of
the total running time for higher-level applications: log pars-
ing, format conversions, and data validation. StreamTok can
offer a substantial performance benefit (2.5 to 5% compared
to flex) for these applications by speeding up tokenization.

RQ6: Comparison with OOPSLA’25 Algorithms

The work [29] proposes the ExtOracle and TokenSkip al-
gorithms. Both are inherently offline, i.e., they require the
entire input to be available before the computation can start,
and cannot be used in a streaming setting. More specifically,
they first perform a backwards (right-to-left) pass and then
a forward (left-to-right) pass over the input. The backwards
pass would have to start from the end of the stream. For an
unbounded stream, this is impossible. For a bounded stream,
this would require buffering the entire stream before any pro-
cessing can start. For large or fast streams both algorithms
of [29] are impractical: they can easily run out of memory
and the latency would be unbounded.

It was demonstrated in [29] that ExtOracle is the more
competitive algorithm in practice, so we will only consider
ExtOracle here. We have seen in RQ3 (Fig. 10) that ExtOracle
has competitive throughput on many workloads. Regarding
memory usage, ExtOracle buffers the entire stream and hence
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needs much more memory than StreamTok. We empirically
verify this claim regarding memory usage (in MB) by using
the same set of grammars and files as in RQ3:

Method csv  json tsv log fasta yaml
StreamTok 0.1 0.1 0.1 0.1 0.1 0.1
ExtOracle 2003.0 2004.6 2003.0 2007.3 2003.1 2019.0

The input size is always 1000 MB (prefix from each file). For
StreamTok, the memory footprint consists of the 64 KB input
buffer and the DFA representation. We measure the Resident
Set Size (RSS) for ExtOracle. We observe that ExtOracle needs
orders of magnitude more memory to store the stream and
the “lookahead tape” computed during the backwards pass.
ExtOracle has the advantage that it can be applied to any
grammar regardless of max-TND, while StreamTok cannot
work with grammars with unbounded max-TND. This means
that there is a tradeoff between efficiency and generality.
While StreamTok can only be used on a restricted subset of
tokenization grammars (which our static analysis of Fig. 3
can identify), it is more space-efficient and can be used on
large or unbounded input streams.

Summary of RQ6: The algorithms of [29] are not suitable
for the streaming setting, as they buffer the entire stream.
The benefit of ExtOracle [29] is that it applies to all tokeniza-
tion grammars, including those with unbounded max-TND.
StreamTok, on the other hand, applies only to grammars with
bounded max-TND. For this subclass of grammars, Stream-
Tok is much more memory-efficient than ExtOracle, because
StreamTok supports block-by-block processing for streams.

7 Related Work

Tokenization is also called lexing or scanning, especially
in lexical analysis. Some early relevant works are [10, 24].
Conway [10] proposes structuring a compiler as a pipeline
of stages (“coroutines”) that communicate with data streams.
In particular, [10] considers lexical analysis and syntactical
analysis as two separate stages. Johnson et al. [24] propose
the use of regular expressions and finite-state automata for
the automatic generation of “lexical processors”.

The standard textbook algorithm for lexing is automata-
based [1]. This standard algorithm may exhibit quadratic-
time behavior (in the worst case) due to backtracking. The
lexer generator flex [47] implements the technique described
in [1]. Reps [38] proposed a linear-time lexing algorithm that
uses memoization to avoid exploring paths that are already
known to fail. A disadvantage of the approach of [38] is its
high memory cost, which is O(Mn), where M is the size of
the DFA and n is the length of the input. Two linear-time
tokenization algorithms were recently proposed in [29]. The
main idea is to first perform a right-to-left pass to compute
lookahead information and then perform a left-to-right pass
for backtracking-free tokenization. The approach of [29]
solves both the quadratic backtracking issue of flex [47] and
the high memory costs of [38].

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Some popular lexer generators are flex [47], Ragel [9],
RE/flex [39], and re2c [7]. Flex is a state-of-the-art lexer
generator that supports streaming input and implements the
DFA-based backtracking algorithm. Ragel, RE/flex, and re2c
implement the same tokenization algorithm as flex.

Algorithms for parallel lexing are investigated in [4] and
[30]. Verbatim [15], Verbatim++ [16], and Coglex [35] are
formally verified lexing tools. They produce verified lexers
that are mathematically guaranteed to conform to a standard
maximal-munch specification. These works are based on Br-
zozowski derivatives [6]. Derivative-based approaches may
suffer in performance due to potential blowups in the sizes of
the derivatives. However, Brzozowski derivatives are conve-
nient for functional implementations and give rise to simple
proofs of correctness. So, it is not surprising that several
works in verification choose derivatives [3, 11, 45, 46, 51]
over alternatives (e.g., that use automata).

8 Conclusion

We have studied the problem of maximal-munch tokeniza-
tion in a streaming setting. The tokenizer is specified using
a grammar that consists of regular expressions (tokenization
rules). We have seen that (in the worst case) tokenization
requires space that is proportional to the stream length. We
have introduced the notion of maximum token neighbor
distance (max-TND), which is key for identifying grammars
that admit streaming tokenization. Computing max-TND is
PSPACE-complete. We have designed a static analysis algo-
rithm for computing the max-TND, which is efficient when
the tokenization DFA is small. Finally, we have proposed an
efficient streaming tokenization algorithm (StreamTok) that
can be applied to grammars with bounded max-TND. Our
experimental evaluation has shown that StreamTok has a
performance advantage over existing tools and it can benefit
several higher-level applications that rely on tokenization.

Future Work. One direction for future work could be to
parallelize the StreakTok algorithm so that it can take ad-
vantage of multi-core CPUs when handling high-speed data
streams. Parallelization is expected to be easier for bounded
max-TND, as the information needed to check token maxi-
mality is more local. The techniques of [34] may be relevant.
Tokenization may also benefit from acceleration with GPUs
[17, 18, 27] or custom hardware [48, 49]. Finally, Stream-
Tok could be used to accelerate data processing (e.g., JSON
validation) with application-specific tokenizers [28].
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