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ABSTRACT
JSON is a popular data format for storing semi-structured data. We
investigate the computational problem of JSON validation, which is
the task of checking whether a JSON document adheres to a given
schema. While there are several existing tools that support JSON
validation, they implement offline algorithms that require loading
the entire document in memory and creating the full parse tree
before performing validation. This offline approach is constrained
by the available system memory and is inappropriate when the data
is presented as a stream. We propose an approach for performing
streaming JSON validation that relies on a new class of pushdown
automata that can process JSON documents in an online fashion.
Our experimental results show that our approach uses substantially
less memory and is faster than state-of-the-art tools.
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1 INTRODUCTION
JavaScript Object Notation (JSON) [26] is a data format that is
widely used for exchanging and storing data. Among its main use
cases are Web APIs, where JSON serves as the exchange format
for requests and responses; configuration files, where it stores set-
tings for software applications in a clean and easy-to-read format;
and data storage with NoSQL databases like MongoDB [39] or
RxDB [46]. More recently, relational databases such as Oracle [43]
and MySQL [41] have added support for storing and querying JSON
documents. Additionally, JSON is used in the development of mobile
applications, IoT systems [54], and microservices. This versatility
makes JSON ubiquitous in modern software ecosystems.

JSON is a flexible data format, but it lacks features that can ensure
data consistency (e.g., type restrictions). This flexibility, although
useful in many cases, can also lead to errors and misinterpreta-
tions when different systems exchange data. JSON Schema [27] is a
schema language that is used to enforce data consistency over JSON
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documents. A JSON schema defines constraints over data types, val-
ues, required keys, etc. Common use cases of JSON Schema include
structural validation (i.e., checking that a document conforms to the
required structure), the definition of interfaces for communication
with microservices (Postman [45]), and schema-aware serialization
(JSON BinPack [52]) of data for efficient transmission.

In this work, we focus on the data validation problem. An inter-
esting application of data validation can be found in both relational
databases like Oracle [43] that extend the SQL query language
to support schema validation, and in NoSQL databases like Mon-
goDB [39] where JSON schemas are used to give some structure to
the documents. A very popular tool for data validation is AJV [1],
which has extensive support for the JSON Schema language and
performs well for small JSON documents. There are many other
JSON schema validators, and most of them are based on the same
recursive algorithm. First, the algorithm parses the JSON document
and JSON schema into abstract syntax trees (ASTs). Then, it tra-
verses both ASTs to check if the document conforms to the schema.
In the context of schema validation for databases (both for rela-
tional [41, 43] and NoSQL [39, 46] databases), the document AST
can be too large to fit in main memory, thus restricting schema
validation to only small files. This motivates our work on design-
ing a streaming validation algorithm that ensures small memory
footprint when handling large JSON documents.

A natural approach for streaming schema validation over hier-
achical data is to use pushdown automata, in particular models such
as visibly pushdown automata (VPAs) [3]. One feature of JSON docu-
ments that make them a poor fit for VPAs is that the fields of objects
are considered to be unordered and can therefore appear in any order.
For example, if an automaton accepts {"x": 1, "y": 2, "z": 3} ,
then it should also accept the 5 other documents in which the fields
are permuted. Encoding the set of all permutations using VPAs
results in an exponential blowup in the size of the state space. For
instance, the schema Obj(𝑥1 : Num, . . . , 𝑥𝑛 : Num), which accepts
JSON objects with 𝑛 keys that are associated with numerical values,
can be represented as a VPA that requires Ω(𝑛!) states. This expo-
nential blowup always arises when objects are used and therefore
VPAs are inherently unsuitable for JSON data.

To overcome the limitations of classical pushdown automata and
VPAs for JSON data, we propose here a more succinct variant that
specifically addresses the issue of the possible reordering of fields in
objects. One crucial idea is that we can extend the pushdown stack
with more information regarding the set𝑚 of keys that appear in
a JSON object. We use a succinct data structure for this purpose,
namely a bit vector. Every time we see a string that has the role
of a key, we update the set𝑚 at the top of the stack. When we see
the closing brace of an object, we can then use this set𝑚 of keys
to check against a guard that validates whether 𝑚 is acceptable,
i.e., all the required keys appear in the object. For a given schema,
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we only need to consider a finite number of keys (i.e., those that
appear in the schema) and for this reason the size of the set𝑚 is
bounded. We call the class of automata that employ this feature
JSON automata (JAs). The automata can be nondeterministic (NJAs)
or deterministic (DJAs). Using this model of automata, the schema
Obj(𝑥1 : Num, . . . , 𝑥𝑛 : Num) can be represented as a DJA with
only 5 states (hence independent of the number 𝑛 of keys) and a
set𝑚 of keys of size 𝑛.

Main Contributions. The main contributions of this paper are
the following:
(1) We introduce the model of JSON automata (JAs), which are

appropriate for succinctly encoding JSON schemas.
(2) We propose a streaming algorithm for the validation of JSON

documents against schemas. The algorithm is based on deter-
ministic JSON automata (DJAs). The memory footprint of our
validation algorithm is independent of the size of the input
JSON document (assuming bounded height).

(3) We have implemented a schema validation tool based on our
proposed algorithm. Experiments show that our tool has a
substantially smaller memory footprint and higher throughput
than state-of-the-art tools on practical workloads.

2 PRELIMINARIES
In this section, we provide a formal definition of JSON values, we
describe JSON Schema [27], and we present our schema language,
which is a subset of JSON Schema that covers its main features.

Informally, a JSON value can be viewed as a tree, where arrays
and objects are rooted at internal nodes, whereas constant values,
numbers, and strings are leaves of the tree. More formally, a JSON
value is given by the grammar

𝑣, 𝑣𝑖 ::= null | false | true | [constant values]
𝑛 | 𝑠 | [JSON number / string]
[ 𝑣1 , . . . , 𝑣𝑛 ] | [array]
{𝑘1 : 𝑣1 , . . . ,𝑘𝑛 : 𝑣𝑛 } [object]

where 𝑛 is a JSON number (as defined in the JSON standard), 𝑠 is
a JSON string, 𝑘1, . . . , 𝑘𝑛 are pairwise distinct strings (i.e., 𝑖 ≠ 𝑗

implies 𝑘𝑖 ≠ 𝑘 𝑗 ), and 𝑣1, . . . 𝑣𝑛 are JSON values.
For an object {𝑘1 : 𝑣1 , . . . ,𝑘𝑛 : 𝑣𝑛 } , the strings 𝑘1, . . . , 𝑘𝑛 are

called keys. We call the values 𝑣1, . . . , 𝑣𝑛 of an array [ 𝑣1 , . . . , 𝑣𝑛 ]

the elements of the array. The values 𝑣1, . . . , 𝑣𝑛 of an object or an
array can be objects or arrays themselves.

Example 1. An example of a JSON value is given below for an
array of three elements representing 2D points. Each element has
two keys, "x" and "y" , to represent the point position. The values
associated with "x" and "y" are JSON numbers.

[{"x":1.0,"y":1.0}, {"x": 2.0,"y":1.0}, {"x":5.0,"y":1.5}]

JSON Schema. JSON Schema [27] is a language used to define
the structure of JSON documents. It uses JSON syntax to describe
type and value domain constraints over JSON documents. The
constraints that the language supports include the following:
− String constraints: value constraints on string length (min and

max) and patterns (i.e., string matches a regular expression 𝑟 ).

{ "type": "array",
"items": { "type": "object",
"properties": {
"x": { "type": "number" }, "y": { "type": "number" } },

"required": ["x", "y"] } }

Figure 1: JSON schema representing an array of 2D points.

𝑠, 𝑠𝑖 ::= Anything | [any JSON value]
Nothing | [no value]
Null | [value null ]
Bool | [Boolean value]
Num | [JSON number]
Str | [JSON string]
Arr(𝑠 ) | [array]
Obj(𝑘1 : 𝑠1, . . . , 𝑘𝑛 : 𝑠𝑛 ; req; 𝑠𝑜 ) | [object]
Or(𝑠1, . . . , 𝑠𝑛 ) | [union]
And(𝑠1, . . . , 𝑠𝑛 ) | [intersection]
Var(𝑖 ) [variable]

Figure 2: Syntax of the JSON Schema Language (JSL).

− Numerical constraints: numbers have range (min and max) and
multiplicity constraints.

− Array constraints: constraints over the array length, and the
schema of the array elements.

− Object constraints: constraints over the keys that are required
(i.e., must be present), and a schema for each key.

− Type constraints: they restrict JSON values to be a certain data
type (object, array, string, number, integer, boolean, null).

− Boolean operators: combination of schemas to refine constraints
with Boolean operators (AND, OR, XOR, NOT).

The list above is not exhaustive, but includes the main constraints
that are used in practice. The JSON schema of Fig. 1 accepts arrays
of 2D points (e.g., the value of Example 1).

A Core Schema Language. We introduce the JSON Schema
Language (JSL), a formalism that captures the core features of JSON
Schema, including type constraints, Boolean operators, required
keys, and recursion. The syntax of schemas is presented in Fig. 2.

In JSL, an object schema Obj(𝑘1 : 𝑠1, . . . , 𝑘𝑛 : 𝑠𝑛 ; req; 𝑠𝑜 ) con-
strains JSON objects by restricting both their keys (also called prop-
erty names) and values. Each 𝑘𝑖 is a JSON string. The component req
indicates which of these keys are required (formally, it is a subset of
{𝑘1, . . . , 𝑘𝑛}). The schema 𝑠𝑜 constrains all other values that are not
associated with a key 𝑘1, . . . , 𝑘𝑛 , and corresponds to the keyword
additionalProperties in JSON Schema. An array schema Arr(𝑠)
constrains the set of valid arrays to those where each array element
satisfies the subschema 𝑠 .

We specify a recursive schema 𝐸 using a system of equations:
Var(0) := 𝑠0,Var(1) := 𝑠1, . . . ,Var(𝑛 − 1) := 𝑠𝑛−1, where each
schema 𝑠𝑖 contains only variables among Var(0), . . . ,Var(𝑛 − 1).

Notation: For the rest of the paper, we specify schemas in JSL.
The JSL schema for an array of 2D points (e.g., the array of Fig. 1)
is 𝑠1 = Obj( "x" : Num, "y" : Num;Nothing) where the schema
following the semicolon, namely 𝑠𝑜 = Nothing, constrains the
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⟦Anything⟧ 𝜗 = {𝑣 | 𝑣 is a JSON value}
⟦Nothing⟧ 𝜗 = ∅
⟦Null⟧ 𝜗 = { null }
⟦Bool⟧ 𝜗 = { true , false }
⟦Num⟧ 𝜗 = {𝑛 | 𝑛 is a JSON number}
⟦Str⟧ 𝜗 = {𝑠 | 𝑠 is a JSON string}

⟦Arr(𝑠 )⟧ 𝜗 = { [ 𝑥1 , . . . , 𝑥𝑛 ] | 𝑥𝑖 ∈ ⟦𝑠⟧ 𝜗 for every 𝑖 }
⟦Obj(𝑚,𝑟𝑒𝑞, 𝑠𝑜 )⟧ 𝜗 = { {𝑘1 : 𝑣1 , . . . ,𝑘𝑛 : 𝑣𝑛 } |

the keys in req are among 𝑘1, . . . , 𝑘𝑛 , and
for every 𝑖 = 1, . . . , 𝑛:
if 𝑘𝑖 : 𝑠 is in𝑚, then 𝑣𝑖 ∈ ⟦𝑠⟧ 𝜗 , and
if 𝑘𝑖 is not in𝑚, then 𝑣𝑖 ∈ ⟦𝑠𝑜⟧ 𝜗 }

⟦Or(𝑠1, . . . , 𝑠𝑛 )⟧ 𝜗 =
⋃︁𝑛

𝑖=1 ⟦𝑠𝑖⟧ 𝜗
⟦And(𝑠1, . . . , 𝑠𝑛 )⟧ 𝜗 =

⋂︁𝑛
𝑖=1 ⟦𝑠𝑖⟧ 𝜗

⟦Var(𝑖 )⟧ 𝜗 = 𝜗 (𝑖 )

Figure 3: Interpretation of JSL schemas.

values of keys other than "x" or "y" . If the component 𝑠𝑜 is omit-
ted, it is assumed to be Anything. Optional keys are indicated by
appending a question mark to the property name. The schema
𝑠2 = Obj( "x" : Num, "y" ? : Num) imposes the following con-
straints on the object properties: (i) the key "x" is required and
the corresponding value must be a number, and (ii) the value for
key "y" (if it is present) must be a number. The JSON document
{"x": 2} is accepted by 𝑠2 (because the key "y" is optional), but
rejected by 𝑠1 (because the required key "y" is missing).

Denotational semantics of JSL. Every schema is interpreted
as a set of JSON values (which is a language of linearized trees),
i.e., the values that satisfy the schema. A variable assignment is
a (potentially partial) function 𝜗 that maps a variable Var(𝑖) to a
set 𝜗 (𝑖) of JSON values. Informally, a variable assignment specifies
an interpretation for each variable. In Fig. 3, we define a semantic
function that gives the interpretation ⟦𝑠⟧ 𝜗 of a schema 𝑠 w.r.t. the
variable assignment 𝜗 . Implicit in this notation is the requirement
that 𝜗 (𝑖) is defined for every variable Var(𝑖) that appears in 𝑠 . Given
a recursive schema 𝐸, which consists of the equations

Var(0) := 𝑠0, Var(1) := 𝑠1, . . . ,Var(𝑛 − 1) := 𝑠𝑛−1,
we give the standard least fixpoint semantics [55] with the follow-
ing approximation sequence (𝜗 𝑗 ) 𝑗≥0 of variable assignments that
only needs to be defined for the variables Var(0), . . . ,Var(𝑛 − 1):
𝜗0 (𝑖) = ∅ and 𝜗 𝑗+1 (𝑖) = ⟦𝑠𝑖⟧ 𝜗 𝑗 for every 𝑖 = 0, 1, . . . , 𝑛 − 1 and
every integer 𝑗 ≥ 0. We write ⟦Var(𝑖)⟧𝐸 =

⋃︁
𝑗≥0 𝜗 𝑗 (𝑖) for the least

fixpoints defined by the recursive schema 𝐸.
More generally, if 𝑠 is a schema whose variables are among

Var(0), . . . ,Var(𝑛 − 1) and 𝐸 is a recursive schema that defines all
of these variables, then ⟦𝑠⟧𝐸 is the interpretation of 𝑠 assuming a
least fixpoint interpretation of the variables according to 𝐸.

The Validation Problem. Let 𝑠 be a JSL schema, 𝐸 be a list of
equations for all the variables of 𝑠 , and 𝑑 be a JSON document. The
validation problem asks whether 𝑑 is valid for the schema 𝑠 w.r.t. 𝐸,
i.e., if 𝑑 ∈ ⟦𝑠⟧𝐸 . It is known that the validation problem for JSON
schema is in PTIME for schemas without dynamic references [4, 44].

For the rest of the paper, we make this assumption, as dynamic
references are rarely used in practice.

3 JSON AUTOMATA
In this section, we introduce our model of JSON automata (JAs),
which can be nondeterministic (NJAs) or deterministic (DJAs).
These automata use a stack to handle the nested tree structure
of JSON. The main difference from other “pushdown” models with
a stack is that JAs deal with the potential re-ordering of key-value
pairs in objects using a compact data structure (a bitmap) that
records the keys that appear in each object (only those that are rel-
evant for schema validation). This feature is essential for avoiding
the exponential blowup from an explicit representation of all possi-
ble re-orderings (there are Θ(𝑛!) of them, where 𝑛 is the number of
keys in an object). We also introduce a special symbol, other, which
never belongs to a given set 𝐾 of keys. Intuitively, it stands for “any
other key” not listed in 𝐾 , and is used for the additional properties
in a schema. For convenience, we write 𝐾𝑜 = 𝐾 ∪ {other}.

3.1 Nondeterministic JAs
Definition 2 (NJA). Let𝐾 be a finite set of keys. A nondeterministic
JSON automaton (NJA) over𝐾 is a tupleA = (𝑄, 𝐼,𝐶,Δ, 𝐹 ), where𝑄
is a finite set of (control) states, 𝐼 ⊆ 𝑄 is the set of initial states,𝐶 is a
finite set of stack symbols, 𝐹 ⊆ 𝑄 is the set of final or accepting states,
and Δ consists of the following collection of transition relations:

Δℓ : 𝑄 → P(𝑄 ×𝐶) for ℓ ∈ { [ , { } ΔKey : 𝑄 × 𝐾𝑜 → P(𝑄)
Δ ] : 𝑄 ×𝐶 → P(𝑄) Δ𝑖 : 𝑄 → P(𝑄)
Δ } : 𝑄 ×𝐶 → P(Pred(𝐾) ×𝑄)

where 𝑖 ∈ { null , false , true , JNum, JStr, : , , }.
For each 𝑘 ∈ 𝐾𝑜 , the transition relation Δ𝑘 : 𝑄 → P(𝑄) is given

by Δ𝑘 (𝑞) = ΔKey (𝑞, 𝑘) for every 𝑞 ∈ 𝑄 .

Notation: Below we define some notation for NJA transitions:
(𝑞′, 𝑐) ∈ Δ [ (𝑞)

𝑞 → [ /push(𝑐 ) 𝑞′

(𝑞′, 𝑐) ∈ Δ { (𝑞)

𝑞 → { /push(𝑐 ) 𝑞′

𝑞′ ∈ Δ ] (𝑞, 𝑐)

𝑞 → ] /pop(𝑐 ) 𝑞′

(𝜑, 𝑞′) ∈ Δ } (𝑞, 𝑐)

𝑞 → } /pop(𝑐,𝜑 ) 𝑞′

𝑞′ ∈ ΔKey (𝑞, 𝑘) 𝑘 ∈ 𝐾
𝑞 →𝑘/add(𝑘 ) 𝑞′

𝑞′ ∈ ΔKey (𝑞, other)
𝑞 →other 𝑞′

𝑞′ ∈ Δ𝑖 (𝑞) 𝑖 ∈ { null , false , true , JNum, JStr, : , , }
𝑞 →𝑖 𝑞′

We will use this notation when drawing NJAs.
A transition relation Δ : 𝑄 → P(𝑄) can be viewed as the binary

relation {(𝑞, 𝑞′) ∈ 𝑄 ×𝑄 | 𝑞′ ∈ Δ(𝑞)} on 𝑄 .
The transition relation separates the cases of arrays and objects:

Δ ] handles the closing bracket of arrays, while Δ } handles the
closing brace of objects. The latter requires special treatment, since
the transition depends on the set of keys that appear in the object.

A stack entry is either of the form Arr(𝑐) or of the form Obj(𝑐,𝑚),
where 𝑐 ∈ 𝐶 and 𝑚 ⊆ 𝐾 . The component 𝑚 is a subset of keys,
which is used to remember the set of keys that have been seen so



(𝑞′, 𝑐 ) ∈ Δ [ (𝑞)

(𝑞, 𝜎 ) → [ (𝑞′, 𝜎 · Arr(𝑐 ) )

(𝑞′, 𝑐 ) ∈ Δ { (𝑞)

(𝑞, 𝜎 ) → { (𝑞′, 𝜎 · Obj(𝑐, ∅) )

𝑞′ ∈ Δ ] (𝑞, 𝑐 )

(𝑞, 𝜎 · Arr(𝑐 ) ) → ] (𝑞′, 𝜎 )

(𝜑,𝑞′ ) ∈ Δ } (𝑞, 𝑐 ) 𝑚 |= 𝜑

(𝑞, 𝜎 · Obj(𝑐,𝑚) ) → } (𝑞′, 𝜎 )
𝑞′ ∈ ΔKey (𝑞, 𝑘 ) 𝑘 ∈ 𝐾

(𝑞, 𝜎 · Obj(𝑐,𝑚) ) →𝑘 (𝑞′, 𝜎 · Obj(𝑐,𝑚 ∪ {𝑘 }) )
𝑞′ ∈ ΔKey (𝑞, other)

(𝑞, 𝜎 · Obj(𝑐,𝑚) ) →other (𝑞′, 𝜎 · Obj(𝑐,𝑚) )

𝑞′ ∈ Δ𝑖 (𝑞) 𝑖 ∈ { null , false , true , JNum, JStr, : }
(𝑞, 𝜎 ) →𝑖 (𝑞′, 𝜎 )

𝑞′ ∈ Δ , (𝑞) 𝜎 ≠ ∅

(𝑞, 𝜎 ) → , (𝑞′, 𝜎 )

Figure 4: Operational (i.e., execution) semantics for NJAs.

far in an object. A stack is a sequence of stack entries, which we
write as [𝑒0, 𝑒1, . . . , 𝑒𝑘−1] (the entry 𝑒𝑘−1 is at the top of the stack).
A configuration is a pair (𝑞, 𝜎), where 𝑞 is a control state and 𝜎 is a
stack. We write [ ] for the empty stack. A configuration is initial
(resp., final) if it is of the form (𝑞, [ ]), where 𝑞 is an initial (resp.,
final) state. A final configuration must have an empty stack, which
is not always required in classical VPAs [3]. The transition relation
Δ of the automaton induces a transition relation→ (indexed by
input symbols) on configurations, which is defined in Fig. 4. The
notation 𝑚 |= 𝜑 means that 𝑚 satisfies 𝜑 . A path 𝜋 in A is an
alternating sequence

cfg0 →𝑥0 cfg1 →𝑥1 · · · →𝑥𝑛−2 cfg𝑛−1 →𝑥𝑛−1 cfg𝑛,

where each 𝑥𝑖 is an input symbol and each triple cfg𝑖 →𝑥𝑖 cfg𝑖+1 is
a transition according to the definition of Fig. 4. We also define the
label of the path as label(𝜋) = 𝑥0𝑥1 . . . 𝑥𝑛−1. A path is accepting if
it starts with an initial configuration and ends with a final configu-
ration. The automaton accepts an input sequence 𝑥 if there exists
an accepting path 𝜋 with label(𝜋) = 𝑥 .

Example 3 (NJA for Nested Arrays of Numbers). We will describe
the NJA that accepts documents that are nested arrays of numbers.
It can be represented in JSL by the equation𝑋 := Or(Num,Arr(𝑋 )).
The automaton of Fig. 5a recognizes 𝑋 .

At the initial state ‘Start’, the outgoing transition on JNum cor-
responds to the base case and leads to the accepting state. The
self-loop at ‘Start’ on [ is for the recursive case of the schema. The
outgoing transition from the state ‘Bracket’ is taken when an empty
array is seen. At the ‘Accept’ state, the self-loop on ] corresponds
to returning from one level of recursion. If we encounter a comma
and the stack is not empty, we remain at the same level. We omit
the stack symbol for the push and pop transitions as the automaton
has only one stack symbol. For simplicity, we omit the rejecting
state, which is a sink. Missing transitions go to the rejecting state.

3.2 Constructions on NJAs
In this subsection, we present how NJAs are constructed from JSL
schemas with examples for objects, arrays, unions, and recursion.

Start Accept

Bracket

JNum

[ / push( ) [ / push( ) ] / pop( )

] / pop( )

,

(a) Automaton A

Start InArr Acc

InObj Key Colon

Num OutObj

Comma

[ / push( ) ] / pop( )

{ / push( )

𝑥 / add(𝑥 )
𝑦 / add(𝑦)

:

JNum

} / pop(𝜑 ),

] / pop( )

,

{ / push( )

(b) Automaton B

Start InArr Accept

Comma ArrElm

[ / push( ) ] / pop( )

JNum JStr
,

JNum

JStr

] / pop( )

(c) Automaton C

Start InObj Key

Accept

{ / push( ) 𝑙 / add(𝑙 )

𝑟 / add(𝑟 )
:

JNum ,

} / pop(𝜑 )

(d) Automaton D

Start Accept

Bracket

JNum

[ / push( )

[ / push( )
] / pop( )JNum

] / pop( )
,

(e) Automaton E

Figure 5: Examples of JSON automata (A–E).

Example 4. We consider the schema that accepts arrays of objects,
where each object is a 2D point. Fig. 5b shows the automaton for the
schema Arr(Obj( "x" : Num, "y" : Num)). We consider the JSON
document from Example 1. We show part of the execution path of
the NJA on this document. We omit the stack from a configuration
whenever it does not change from the previous one.

(Start, [ ] ) → [ (InArr, [Arr] ) → { (InObj, [Arr, Obj(∅) ] ) → "x"

(Key, [Arr, Obj({ "x" }) ] ) → : Colon→ 1.0 Num→ , InObj→ "y"

(Key, [Arr, Obj({ "x" , "y" }) ] ) → : Colon→ 1.0 Num→ }

(OutObj, [Arr] ) → , Comma→ { (InObj, [Arr, Obj(∅) ] ) → "x"

· · · → 1.5 Num→ } (OutObj, [Arr] ) → ] (Acc, [ ] ) .



Example 5. We consider the schema Arr(Or(Str,Num)), which
describes arrays in which each element can be either a string or
a number. Fig. 5c presents the automaton for this schema. Notice
that the automaton collapses the initial and the final states of the
automata for the two subschemas, Str andNum, in theOr construct.
We show its execution path on [1, 2, "hi"] .

(Start, [ ] ) → [ (InArr, [Arr] ) → 1 ArrElm→ , Comma→ 2

ArrElm→ , Comma→ "hi" ArrElm→ ] (Accept, [ ] ) .

Example 6. Consider the NJA that accepts binary trees that store
numbers at the leaves. Such a tree can either be a Num or an ob-
ject with two required keys, "l" and "r" , for the left and right
subtrees. This data structure can be encoded by the following re-
cursive schema: 𝑋 := Or(Num,Obj( "l" : 𝑋, "r" : 𝑋 )). Fig. 5d
presents the automaton for this schema. We consider the document
{"l": {"l": 1, "r": 2}, "r": 3} . This document describes a bi-
nary tree whose left subtree is a tree with two leaves storing the
values 1 and 2, respectively, and whose right subtree is a leaf that
stores the value 3. The execution path of the automaton on this
JSON document is shown below.

(Start, [ ] ) → { (InObj, [Obj(∅) ] ) → "l" (Key, [Obj({ "l" }) ] ) → :

Start→ { (InObj, [Obj({ "l" }), Obj(∅) ] ) → "l"

(Key, [Obj({ "l" }), Obj({ "l" }) ] ) → : Start→ 1 Accept→ ,

InObj→ "r" (Key, [Obj({ "l" }), Obj({ "l" , "r" }) ] ) → : Start→ 2

Accept→ } (Accept, [Obj({ "l" }) ] ) → , InObj→ "r"

(Key, [Obj({ "l" , "r" }) ] ) → : Start→ 3 Accept→ } (Accept, [ ] )

In practice, NJA execution would be very slow as, in addition to
maintaining a list of active states, we also need to maintain a list
of stacks. Therefore, we define the deterministic variant of NJAs,
which we call DJAs. We use DJAs for schema validation.

3.3 Deterministic JAs
Let 𝐾 be a finite set of keys. A key predicate is a subset of P(𝐾).
A set KAt of key predicates that partitions P(𝐾) is called a set of
𝐾-atoms. We will typically use letters 𝛼, 𝛽,𝛾 for elements of KAt.

Definition 7 (DJA). Let 𝐾 be a finite set of keys and KAt be a set
of 𝐾-atoms. A deterministic JSON automaton (DJA) over 𝐾 and KAt
is a tuple A = (𝑄,𝑞0,𝐶, 𝛿, 𝐹 ), where 𝑄 is a finite set of (control)
states, 𝑞0 ∈ 𝑄 is the initial state, 𝐶 is a finite set of stack symbols,
𝐹 ⊆ 𝑄 is the set of final or accepting states, and 𝛿 consists of the
following collection of transition functions:

𝛿ℓ : 𝑄 → 𝑄 ×𝐶 for ℓ ∈ { [ , { } 𝛿Key : 𝑄 × 𝐾𝑜 → 𝑄

𝛿 ] : 𝑄 ×𝐶 → 𝑄 𝛿𝑖 : 𝑄 → 𝑄

𝛿 } : 𝑄 ×𝐶 × KAt → 𝑄

where 𝑖 ∈ { null , false , true , JNum, JStr, : , , }.
For each 𝑘 ∈ 𝐾𝑜 , the transition function 𝛿𝑘 : 𝑄 → 𝑄 is given by

𝛿𝑘 (𝑞) = 𝛿Key (𝑞, 𝑘) for every 𝑞 ∈ 𝑄 .

We use the same notations for transitions as we did for NJAs.
The only difference is the case of transitions on the right brace:

𝑞′ ∈ 𝛿 } (𝑞, 𝑐, 𝛽)

𝑞 → } /pop(𝑐,𝛽 ) 𝑞′

𝑞′ ∈ 𝛿 } (𝑞, 𝑐, 𝛽) 𝑚 |= 𝛽

(𝑞, 𝜎 · Obj(𝑐,𝑚)) → } (𝑞′, 𝜎)

The symbol→ above is for the (semantic) transition relation.

Example 8 (DJA for Nested Arrays of Numbers). We want to
accept arbitrarily nested arrays of numbers. The schema is defined
with the equation 𝑋 := Or(Num,Arr(𝑋 )). Fig. 5e presents the DJA
for this schema. At the initial state, the outgoing transition on
JNum corresponds to the base case and leads to the accepting state.
The outgoing transition on [ to state ‘Bracket’ is for the recursive
case. At state ‘Bracket’, we can receive an arbitrary number of left
brackets that increase the recursion level; we can take a JNum to
remain at the current level; or we can take a right bracket to go
back to the previous level of recursion. At the accepting state, we
have a self-loop that takes a right bracket to return to the previous
level of recursion, and we may also encounter a comma, in which
case we remain at the same level.

Determinization. Next, we focus on the determinization proce-
dure to convert an NJA into an equivalent DJA. The determinization
of NJA is analogous to that of VPAs as presented in [3] and later
refined in [51]. Compared to VPAs, NJAs make use of guards, thus
requiring the use of 𝐾-atoms also known as the “minterms” in
symbolic automata [20].

Let 𝐾 be a finite set of keys and A = (𝑄, 𝐼,𝐶,Δ, 𝐹 ) be an NJA
over𝐾 . Suppose that KAt is a set of𝐾-atoms so that every predicate
𝜑 that appears in A can be written as a (disjoint) union 𝜑 = 𝛽0 ∪
𝛽1∪· · ·∪𝛽𝑘−1 of𝐾-atoms 𝛽𝑖 ∈ KAt. We will define now the DJA B
that results from determinizingA w.r.t. KAt. One could choose KAt
to be the atoms of the Boolean algebra generated by the predicates
that appear in A.

We define a powerstate to be an element of the set 2𝑄×𝑄 or,
equivalently, the set of functions 𝑄 ×𝑄 → 2. That is, a powerstate
can be viewed as a binary relation on 𝑄 or as a square Boolean
matrix indexed by the NJA states. For powerstates 𝑆 and𝑇 , we write
𝑆 ◦𝑇 to denote their composition (as relations). That is,

𝑆 ◦𝑇 = {(𝑞, 𝑞′′) | (𝑞, 𝑞′) ∈ 𝑆 and (𝑞′, 𝑞′′) ∈ 𝑇 for some 𝑞′}.

We write Id𝑄 = {(𝑞, 𝑞) | 𝑞 ∈ 𝑄} for the identity powerstate. The
states of the DJA B are the powerstates ofA. The initial state of B
is Id𝑄 . The transition function on a symbol 𝑖 that is either one of
null , false , true , JNum, JStr, : , , or a key (element of 𝐾𝑜 ) is given
by 𝑆 →𝑖 𝑆 ◦Δ𝑖 . The stack symbols𝐶 of B are the powerstates ofA.
For the transition function on the left bracket and brace, we define

𝑆 → [ /push(𝑆 ) Id𝑄 and 𝑆 → { /push(𝑆 ) Id𝑄 .

The transitions on a right bracket are given as follows:

𝑇 → ] /pop(𝑆 ) 𝑆 ◦ Upd𝐴 (𝑇 ), where

Upd𝐴 (𝑇 ) = {(𝑞, 𝑞′) | 𝑞 → [ /push(𝑐 ) 𝑞1 and (𝑞1, 𝑞2) ∈ 𝑇 and

𝑞2 → ] /pop(𝑐 ) 𝑞′ for some 𝑐, 𝑞1, 𝑞2} .



The transitions on a right brace are given as follows:

𝑇 → } /pop(𝑆,𝛽 ) 𝑆 ◦ Upd𝑂 (𝑇 ), where

Upd𝑂 (𝑇 ) = {(𝑞, 𝑞′) | 𝑞 → { /push(𝑐 ) 𝑞1 and (𝑞1, 𝑞2) ∈ 𝑇 and

𝑞2 → } /pop(𝑐,𝜑 ) 𝑞′ for some 𝑐, 𝑞1, 𝑞2, 𝜑} .
A powerstate 𝑆 is defined to be final in B if it satisfies 𝑆 (𝐼 ) ∩ 𝐹 ≠ ∅,
where 𝑆 (𝐼 ) = {𝑞′ | 𝑞 ∈ 𝐼 and (𝑞, 𝑞′) ∈ 𝑆 for some 𝑞}.

In fact, determinization is only needed for a specific class of NJAs,
that we call 1-ambiguous. The notion of 1-unambiguity was first
defined for regular expressions in [15] to extend ambiguity [11] to
a 1-character lookahead and was adapted later on to DTD schemas
in the context of XML [18, 29]. We define the set of first symbols
for a schema 𝑠 as first (𝑠) = {𝑎 | 𝑎𝑤 ∈ ⟦𝑠⟧ for some𝑤}.

Definition 9 (1-ambiguity). A schema is called 1-ambiguous if
it contains a subschema of the form Or(𝑠1, . . . , 𝑠𝑛) such that there
are indexes 𝑖, 𝑗 with 𝑖 ≠ 𝑗 and first (𝑠𝑖 ) ∩ first (𝑠 𝑗 ) ≠ ∅. A schema is
1-unambiguous if it is not 1-ambiguous.

Operationally, whenwe have a 1-ambiguous unionOr(𝑠1, . . . , 𝑠𝑛),
we cannot choose among the subschemas 𝑠1, . . . , 𝑠𝑛 with a looka-
head of only one symbol. When a schema is 1-unambiguous, its NJA
is essentially deterministic and can be directly translated into an
equivalent DJA, thus avoiding determinization altogether. For exam-
ple, consider the 1-ambiguous schema Or(Arr(Num),Arr(Str)): af-
ter seeing the opening token [ , there is no deterministic way (with-
out looking further ahead) to choose between the two array sub-
schemas. In contrast, the schema Or(Num, Str) is 1-unambiguous:
the first token (either a number or a string in valid documents)
uniquely determines the subschema that should be chosen.

4 STREAMING ALGORITHM FOR JSON
VALIDATION

In this section, we propose a streaming algorithm for validating
JSON documents against schemas. Our algorithm uses the automata
(NJAs and DJAs) of Section 3.

We view a JSON document as a stream of bytes (or, more ab-
stractly, as a stream of Unicode characters). Conceptually, the algo-
rithm can be thought of as a pipeline of three stages: (1) the first
stage converts the input byte stream into a stream of JSON tokens,
(2) the second stage enriches the token stream with additional infor-
mation about string tokens that are used as keys in the document
(i.e., as property names in objects), and (3) the third stage executes
an automaton (DJA) that captures the restrictions of the schema.

For the first stage, a standard tokenization or lexing algorithm
(see, e.g., [35]) can be used to convert the JSON character stream
into a stream of JSON tokens, which are of the following form:

[ { ] } null false true 𝑛 𝑠 : ,

where 𝑛 is a JSON number and 𝑠 is a JSON string.
The JSON token stream is not suitable as input for NJAs and

DJAs, because these automata need to receive input symbols that
distinguish between strings that are used as values (we represent
them with the symbol JStr) and strings that are used as keys (rep-
resented with the symbol JKey). Making this distinction requires
contextual information, i.e., we essentially have to parse the JSON
token stream. We do not need, however, to construct the parse tree

// State of algorithm
1 mode← Start; stack ← [ ]
2 Function GetEToken(tk : Token):
3 if mode = Start then
4 if tk = [ then stack.push(Arr(0) ) ; mode← Start; return tk
5 else if tk = { then stack.push(Obj(0) ) ; mode← Key; return tk
6 else if tk = ] then
7 𝑒 ← stack.last( ) // top of the stack
8 if 𝑒 = Some(Arr(0) ) then
9 stack.pop( ) ; ValueCompletion( ) ; return tk

10 else error “parsing error”
11 else if tk is primitive value then ValueCompletion( ) ; return tk
12 else error “parsing error”
13 else if mode = Key then
14 if tk = } then
15 𝑒 ← stack.last( ) // top of the stack
16 if 𝑒 = Some(Obj(0) ) then
17 stack.pop( ) ; ValueCompletion( ) ; return tk
18 else error “parsing error”
19 else if tk = JStr(𝑠 ) then

// translate string to key identifier or other
20 𝑘 ← stringToKey (𝑠 ) ; mode← Colon; return JKey(𝑘 )
21 else error “parsing error”
22 else if mode = Colon then
23 if tk = : then mode← Start; return tk
24 else error “parsing error”
25 else if mode = CommaArr then
26 if tk = ] then ValueCompletion( ) ; return tk
27 else if tk = , then mode← Start; return tk
28 else error “parsing error”
29 else if mode = CommaObj then
30 if tk = } then ValueCompletion( ) ; return tk
31 else if tk = , then mode← Key; return tk
32 else error “parsing error”
33 else if mode = Finished then error “parsing error”
34 else error “internal error (should be unreachable)”

35 Function ValueCompletion():
36 𝑒 ← stack.pop( )
37 if let Some(𝑒 ) = 𝑒 then
38 if let Arr(𝑛) = 𝑒 then
39 𝑒 ← Arr(𝑛 + 1) // update counter for array elements
40 stack.push(𝑒 )
41 mode← CommaArr
42 else if let Obj(𝑛) = 𝑒 then
43 𝑒 ← Obj(𝑛 + 1) // update counter for object fields
44 stack.push(𝑒 )
45 mode← CommaObj
46 else error “internal error (should be unreachable)”
47 else // empty stack, top level
48 mode← Finished

Figure 6: Streaming algorithm for generating e-tokens from
the JSON token stream. The algorithm also checks that the
stream is well-formed as a JSON value.

(i.e., the JSON AST). This gives rise to the notion of extended tokens
or e-tokens for brevity. Additionally, we translate a key (string) into
an identifier that is easier to use for lookups. The idea is that for a
fixed schema 𝑆 , there is a finite number of keys that appear in 𝑆 and
we can assign identifiers from a finite set 𝐾 to them. In practice,
these identifiers are integers. Keys that do not appear in 𝑆 do not
need to be distinguished and for this reason we associate all of
them with the special identifier other. The streaming algorithm of
Fig. 6 performs the transformation of the JSON token stream into
the corresponding e-token stream, given a function stringToKey
that takes a JSON string 𝑠 and returns a key identifier. The function
stringToKey is specific to a schema. Notice the use of stringToKey
in line 20 of Fig. 6.



// DJA A = (𝑄,𝑞0,𝐶, 𝛿, 𝐹 ) for schema validation

// include the state of the algorithm of Fig. 6

1 𝑞 ← 𝑞0 // current state of DJA

2 vstack ← [ ] // stack for DJA (i.e., for schema validation)

3 Function StreamingValidation(tk : Token):
4 tk ← GetEToken(tk) // generate e-token

5 if tk = [ then (𝑞′, 𝑐 ) ← 𝛿 [ (𝑞) ; vstack.push(Arr(𝑐 ) ) ; 𝑞 ← 𝑞′

6 else if tk = { then (𝑞′, 𝑐 ) ← 𝛿 { (𝑞) ; vstack.push(Obj(𝑐, ∅) ) ; 𝑞 ← 𝑞′

7 else if tk = ] then
8 if let Some(Arr(𝑐 ) ) = vstack.pop( ) then 𝑞 ← 𝛿 ] (𝑞, 𝑐 )
9 else error “parsing error”

10 else if tk = } then
11 if let Some(Obj(𝑐,𝑚) ) = vstack.pop( ) then
12 𝛽 ← the unique 𝐾 -atom 𝛽 ∈ KAt satisfying𝑚 ∈ 𝛽
13 𝑞 ← 𝛿 } (𝑞, 𝑐, 𝛽 )
14 else error “parsing error”
15 else if tk = 𝑘 ∈ 𝐾 then
16 if let Some(Obj(𝑐,𝑚) ) = vstack.pop( ) then
17 𝑒 ← Obj(𝑐,𝑚 ∪ {𝑘 }) ; vstack.push(𝑒 ) ; 𝑞 ← 𝛿Key (𝑞, 𝑘 )
18 else error “parsing error”
19 else if tk = other then
20 if let Some(Obj(_, _) ) = vstack.last( ) then 𝑞 ← 𝛿Key (𝑞, other)
21 else error “parsing error”
22 else if tk = 𝑖 ∈ { null , false , true , JNum, JStr, : } then 𝑞 ← 𝛿𝑖 (𝑞)
23 else if tk = , then
24 if vstack ≠ [ ] then 𝑞 ← 𝛿 , (𝑞)
25 else error “parsing error”
26 else error “internal error (should be unreachable)”
27 return (𝑞 ∈ 𝐹 ) ∧ (vstack is empty)

Figure 7: Streaming DJA Execution for Schema Validation.

At a high-level, the algorithm of Fig. 6 implements a state ma-
chine that can be in any one of six modes:

Start Key Colon CommaArr CommaObj Finished

The mode Start indicates that we expect to construct a JSON value
with the next tokens. When we are in mode Key, we expect the
next token to be a key or possibly the closing brace of an object.
The algorithm also maintains a stack that stores entries of the form
Arr(𝑛) or of the form Obj(𝑛). The symbols Arr and Obj indicate the
parsing of an array and object respectively. The values 𝑛 that are
stored keep track of the current sizes of arrays and objects. This
information is useful for correctly identifying empty arrays [ ]

and empty objects { } . Notice that the algorithm parses the input
without constructing the JSON document AST. This means that
the memory footprint is bounded above by the height of the JSON
document (i.e., the depth of nesting of arrays and objects).

Given an input schema 𝑆 , we first construct an NJAA that recog-
nizes the JSON documents (given in the form of e-token sequences)
that adhere to 𝑆 . The NJA is then converted into an equivalent DJA
B using the determinization procedure described in Section 3.

The third stage of the pipeline receives the stream of e-tokens
and simulates the execution of the DJA B. We describe this with the
algorithm of Fig. 7. Unsurprisingly, the algorithm closely follows
the abstract execution semantics that we presented in Section 3 (in
terms of the transition relation→ on automata configurations).

Time and Space Complexity. The space complexity of the val-
idation algorithm (Fig. 7) is 𝑂 (ℎ), where ℎ is the input document
height. The memory usage of the algorithms from Fig. 6 and Fig. 7
is proportional to the stack sizes, which are bounded above by the

document height. In practice, the height of a document is much
smaller than its size. Our algorithm is therefore expected to have
a small memory footprint, which we experimentally validate in
Section 5. The time complexity of DJA execution is 𝑂 (1) per token,
because performing a transition is implemented as a table lookup.
The caveat with deterministic automata is that they can be large in
the worst case (this is inherent in the model, similarly to the case
when DFAs are exponentially larger than NFAs). We have observed
that most real-world schemas give rise to DJAs of manageable size,
and therefore schema validation with our approach is fast.

5 EXPERIMENTS
We have implemented the schema validation algorithm of §4 using
the Rust programming language. In this section, we evaluate the
performance of our tool to answer the following research questions:
RQ1. [Memory] What is the memory benefit of our streaming

approach compared to existing state-of-the-art tools?
RQ2. [Throughput] Is our tool competitive in terms of through-

put compared to state-of-the-art tools?

Experimental Setup. The experiments were executed on a desktop
computer running Ubuntu 22.04 and equipped with an Intel Core
i9-12900K CPU (with 16 cores) and 32GB of memory. We used Rust
1.81.0 to compile our tool. For each experiment, we conducted 10
trials and report the mean of the measurements.

Tools. We evaluate the performance of our proposed tool, DJA,
against five state-of-the-art JSON Schema validators. The tools are:
(1) AJV [1], one of the most widely used JSON Schema validators
for JavaScript; (2) Boon [12] and (3) JsonSchema-Rust (JSR) [28],
which are validators written in Rust; (4) Rec, our Rust implementa-
tion of the classical recursive offline validation algorithm; and (5)
VPA [16], a schema validator based on VPAs. These tools fall into
two categories: (1) offline validators (AJV, Boon, JsonSchema-Rust,
and Rec), which validate against a parse tree of the input JSON doc-
ument, and (2) streaming validators (DJA and VPA), which operate
directly over the stream of input tokens. For all offline tools except
AJV, we use SIMD-JSON [33], a state-of-the-art SIMD-accelerated
JSON parser, to build parse trees of JSON documents. AJV instead
relies on the native JavaScript JSON parser. Since offline tools con-
struct the full parse tree for the input document, their memory con-
sumption grows with document size. AJV compiles JSON schemas
into specialized JavaScript functions, whereas the other offline tools
do not generate schema-specific validation code.

Methodology. To measure the memory footprint of each tool, we
record the maximum resident set size (RSS) of its main process.
The RSS accounts for the memory allocated on the stack, heap, and
memory-mapped pages and thus provides a reliable estimate of
the peak RAM usage during execution. In practice, this measure
overestimates the memory consumption of our streaming validator
DJA. However, this will not be an issue for the conclusions we will
draw, since DJA’s memory footprint on large input documents is
orders of magnitude smaller than that of offline validators.

5.1 VPA Evaluation
The only streaming implementation for JSON Schema validation
that we are aware of is [50] (see also [16]). In [16], the authors



Table 1: Simple schemas for comparing with the VPA tool.

Name Schema

arr-num Obj( "inner" : Arr(Num) )
arr-str Obj( "inner" : Arr(Str) )
2d-points Obj( "x" : Arr(Num), "y" : Arr(Num) )
2d-points-obj Obj( "table" : Arr(Obj( "x" : Num, "y" : Num) ) )

explore the approach of learning automata for schema validation
from examples. They use 1-SEVPAs [2, 25], which is a subclass of
VPAs that can be efficiently minimized. If the learning procedure
takes too long, then it is cut short, which results in an approximation
to the desired automaton. In practice, learning can take several
weeks (as reported in [16]), which makes it impractical in many
settings. To circumvent the difficulty in learning correct automata,
we restrict our experiments to schemas for which we can manually
create the minimal 1-SEVPA that precisely implements the schema.

We consider four simple schemas (see Table 1): arr-num, which
accepts objects containing an array of numbers, such as

{ "inner" : [𝑛1 , . . . ,𝑛𝑘 ] } ;

arr-str, which differs from arr-num in that the arrays contain
strings; 2d-points, which describes a columnar representation of a
table containing 2D points, such as

{ "x" : [𝑚1 , . . . ,𝑚𝑘 ] , "y" : [𝑛1 , . . . ,𝑛𝑘 ] } ;

and 2d-points-obj, an alternative representation where the table
is given as an array of 2D objects, such as

{ "table" : [ { "x" :𝑚1 , "y" : 𝑛1 } ,

. . . , { "x" :𝑚𝑘 , "y" :𝑛𝑘 } ] } .

We also include two larger schemas from prior work [16]: basic-
types, which accepts objects with properties of various types (ob-
ject, string, number, array), and vscode [53], which specifies the
format of Visual Studio Code snippets.

Fig. 8 presents the throughput of the tools over the 6 schemas.
For all schemas, the VPA tool has the lowest throughput, around
20MB/s, which is an order of magnitude slower than the other
tools. This is because the VPA tool first tokenizes the input doc-
ument into a token stream that is fed to the automaton, and uses
a key graph to handle reordering of object keys, further slowing
execution. Notice that some of the tools cannot perform validation
when the document size becomes large because they run out of
memory. An important aspect of the VPA tool is that it operates on
symbolic documents; for example, in the array-of-numbers schema,
only inputs of the form { "inner" : [ "\D" , . . . , "\D" ] } are
accepted, where "\D" represents a value of type ‘number’.

The VPA tool lacks a direct schema-to-SEVPA translation. As dis-
cussed, it instead relies on a learning procedure to approximate the
SEVPA from examples. Learning can take several weeks for some
schemas. Since learning is too slow and can produce an incorrect
automaton, we exclude the VPA tool from our later experiments.

5.2 Micro-benchmarks
We consider here three families of schemas that explore the asymp-
totic behavior of our DJA-based algorithm.
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Figure 8: Performance comparison between AJV, Boon, JSR,
DJA, Rec and VPA over the 6 schemas of §5.1.

Input Generation. We have created an input generator that pro-
duces a JSON document that is valid for a given schema 𝑠 . To scale up
the experiments over large input documents, we perform validation
using the schema Arr(𝑠) on the JSON document [𝑑1 , . . . ,𝑑𝑘 ]

where 𝑑1, . . . , 𝑑𝑘 are JSON documents generated by our input gen-
erator so that they are accepted by schema 𝑠 .

Conjunction of Objects. For the first micro-benchmark, we focus
on the equivalent schemas

𝑠and = And(Obj(𝑘1 : Str), . . . ,Obj(𝑘𝑚 : Str)) and
𝑠obj = Obj(𝑘1 : Str, . . . , 𝑘𝑚 : Str) .

For 𝑠obj, the classical offline validator can efficiently check the pres-
ence of all keys (and the types of the correponding values) in 𝑂 (𝑛)
time with a single pass over the input, where 𝑛 is the size of the
input document. In contrast, validating against 𝑠and needs𝑂 (𝑚 · 𝑛)
time because the input document is validated against each of the
subschemas Obj(𝑘𝑖 : Str), thus traversing the input tree𝑚 times.

Fig. 9 compares the performance of the offline tools and our
DJA-based algorithm for this micro-benchmark (𝑠and). We observe
that the performance of the offline tools is consistent with𝑂 (𝑚 ·𝑛)
time complexity. The performance of our DJA-based algorithm is
consistent with𝑂 (𝑛) time complexity. AJV performs relatively well
due to code generation, whereas Boon is the worst-performing
tool. In our tool, the DJA is built using a product construction,
and therefore the number of states increases with the number𝑚
of subschemas in 𝑠and. However, after removing unreachable and
dead-end states, most states are eliminated, leading to almost no
performance decrease as𝑚 increases. The constructed DJA remem-
bers the keys seen so far with a bit vector of size 𝑚 (number of
keys) and verifies that the value is a string. If all keys 𝑘1, . . . , 𝑘𝑚
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Figure 9: Performance comparison between AJV, Boon,
JSR, DJA and Rec over the conjunction-of-objects micro-
benchmark for (a) 𝑚 = 70 schemas and varying input size
(between 10 and 100MB), and for (b) input size 𝑛 = 100MB and
varying number of schemas (between 10 and 70 schemas).

are present in the object, we transition to the accepting state when
the closing brace is seen. We observe𝑂 (𝑛) running time in practice
because the bit vector data structure provides efficient support for
the operations of adding a new key and checking if all the required
keys were encountered.

Disjunction of Objects. We consider now the family of schemas
Or(𝑠𝑚−1, . . . , 𝑠0), where 𝑠𝑖 = Obj(𝑘0 : Str, . . . , 𝑘𝑖 : Str) for 𝑖 =

0, . . . ,𝑚 − 1. It holds that ⟦𝑠𝑖+1⟧ ⊆ ⟦𝑠𝑖⟧ for every 𝑖 , and therefore
Or(𝑠𝑚−1, . . . , 𝑠0) is equivalent to 𝑠0 = Obj(𝑘0 : Str). Using the
classical offline validation algorithm, the subschemas 𝑠𝑚−1, . . . , 𝑠0
are evaluated in order until one of them accepts the input document.
Let us consider how the schema is evaluated against a document of
the form {𝑘0 : str } , where str is a JSON string. The validator has
to evaluate all subschemas 𝑠𝑖 , since only 𝑠0 accepts the document.

Fig. 10 compares the performance between the offline tools and
our DJA-based algorithm for this benchmark. The results for the of-
fline tools are consistent with𝑂 (𝑚 ·𝑛) time complexity. The running
time of DJA is independent of𝑚. Among the offline tools, JSR is the
best-performing and Boon is the worst-performing. For this family
of schemas, the union is 1-ambiguous (Def. 9). Our approach uses a
union construction for automata, followed by determinization (this
is needed for 1-ambiguous schemas). However, our construction
does not lead to a performance penalty (for this family of schemas),
because the number of 𝐾-atoms does not blow up. Our approach
leads to an execution that corresponds to the automaton for the
simplified schema Obj(𝑘0 : Str).

Linked List. As discussed in §4, the memory footprint of our
algorithm is proportional to the height of the input document. We
will now investigate the worst-case space complexity of our algo-
rithm using the recursive schema of a linked list𝑋 := Obj( "value" :
Num, "next" ? : 𝑋 ). We use linked lists because the size and height
of the document are linearly related.

Fig. 11 shows the memory footprint of the offline tools against
our DJA-based implementation for document height up to 1 million.
DJA uses an explicit stack on the heap to deal with the nesting in
documents. However, all other tools rely on the call stack for recur-
sive tree traversal. They cause a stack overflow for document height
that exceeds 20,000 (5,000 for AJV), because the maximum stack size
is set to 16MiB by default on our Linux system. To handle longer
lists for our experiments, we manually increase the maximum stack
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Figure 10: Performance comparison between AJV, Boon,
JSR, DJA and Rec over the disjunction-of-objects micro-
benchmark for (a) 𝑚 = 70 schemas and varying input size
(between 10 and 100MB), and for (b) input size 𝑛 = 100MB and
varying number of schemas (between 10 and 70 schemas).
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Figure 11: Performance comparison between (a) AJV, Boon,
JSR, DJA and Rec, and (b) AJV against DJA over linked list
schema.

size to 16GiB. In Fig. 11(a), we observe that all tools have a memory
footprint that is linear in document height. In Fig. 11(b), we focus
on the tools AJV and DJA.

JSR Boon Rec AJV DJA

5879 5573 1203 439 42.5

The table above shows the memory footprint of all tools (in MB)
for document height equal to 106. AJV, which is the most memory-
efficient offline tool, uses at least 10 times more memory than DJA.

5.3 Database Benchmark
We evaluate the throughput andmemory consumption of the offline
tools against our streaming tool over a benchmark of databases.
JSON is a popular format to export and import databases. We have
chosen this benchmark because validating a database against a
schema is a common application. When a database is loaded into a
database system, type and value domain checks are often performed.
JSON Schema can be used to represent the required format for the
database. In addition to relational databases, schema validation can
also be performed in NoSQL databases (such as MongoDB [39]) over
semi-structured documents. These applications require an efficient
validator both in terms of throughput and memory consumption.

Databases. We evaluate the performance of the tools over 15
schemas, which specify the formats of real-world datasets. The
datasets are: (1) AirBnB, a collection of AirBnB apartment listings,
(2) ArXiv, a list of scientific publications available on arXiv, (3)



Table 2: Benchmarks for the JSON Schema validators.

Dataset Description Size Height

AirBnB AirBnB listings 697MB 3
ArXiv Scientific publications 4.4GB 4
Clang Clang AST 1GB 280
Corporations Incorporated businesses in New York 1.8GB 2
Crime Crimes in Chicago 5.3GB 4
EclipseLink Java persistence framework 1.1GB 10
Estate Real estate sales in Connecticut 320MB 4
Euro Exchange rate of euro 530MB 2
Foot-events Football events 8.2GB 6
Fraud-detection Neo4j graph for fraud detection 396MB 4
Health Healthcare providers in Washington 629MB 2
Offshore-leaks Neo4j graph of the Panama papers 3.8GB 3
Twitch Neo4j graph of the Twitch platform 5.1GB 3
Yelp-review Yelp reviews 5.3GB 2
Yelp-user Yelp users 3.4GB 2

Clang, the AST generated by the Clang C++ compiler for the core-
utils codebase [19], (4) Corporations, a collection of incorporated
businesses in the city of New York since 1800, (5) Crime, a list
of the crimes in Chicago since 2001, (6) EclipseLink, a collection
of data structures that are serialized using a Java framework for
persistence, (7) Estate, a dataset that contains the real estate sales
in the state of Connecticut, (8) Euro, a dataset that contains the
daily exchange rates of the euro against foreign currencies, (9) Foot-
event, a database for football game statistics, (10) Fraud-detection,
a graph database that contains information about cases of financial
fraud, (11) Health, a list of healthcare providers in the state of
Washington, (12) Offshore-leaks, a graph database that shows the
connections between companies and people in the Panama papers
leak, (13) Twitch, a graph database for the Twitch streaming plat-
form, (14) Yelp-review, a collection of reviews from Yelp, and (15)
Yelp-user, an anonymized version of the Yelp user database. The
input sizes and heights of the databases are listed in Table 2.

Memory Footprint. Table 3 shows the maximum RSS (resident
set size) used by the tools over the Database benchmark. Due to
size constraints imposed by the parser (SIMD-JSON [49] can han-
dle document size up to 4GB), we have to truncate some datasets.
JavaScript restricts string sizes to 1GB, which limits the document
size supported by AJV to at most 1GB. For DJA, the RSS mea-
surement substantially overestimates the memory footprint of our
algorithm, as it includes the memory used for the program code
(which is typically much larger than the state of our algorithm).

We observe in Table 3 that DJA offers substantial memory sav-
ings: between 65× (for Euro) and 557× (for Corporations) compared
to the most memory-efficient offline tool (AJV). The offline tools
require a large amount of memory because they store the entire
parse tree of the JSON document. The JavaScript parser (used by
AJV) is more space-efficient in representing the parse tree compared
to SIMD-JSON (used by Boon, JSR, and Rec).

Fig. 12 shows the maximum RSS used by the tools as a function
of the input size. We have drawn linear regression lines to make
the relationship between RSS and input size more apparent. DJA
has a small memory footprint because we use a compact repre-
sentation for the transition relations and the stack size is bounded
above by the document height, which is generally small. Notice in
Fig. 12 and Table 3 that the offline tools Boon, JSR, and Rec have

Table 3: Maximum RSS (in MB) for AJV, Boon, JsonSchema-
Rust, DJA and Rec. The Reduction column is the ratio of AJV
over DJA.

Dataset AJV Boon JSR DJA Rec Reduction

AirBnB 1045 5064 5065 2 5064 522
ArXiv 762 7447 7447 3 7445 254
Clang 894 15625 15625 2 15624 447
Corporations 1114 3343 3343 2 3342 557
Crime 620 6613 6613 2 6611 310
EclipseLink 380 4234 4234 2 4233 190
Estate 386 2618 2619 2 2616 193
Euro 195 716 716 3 715 65
Foot-events 1009 9648 9648 2 9646 504
Fraud-detection 573 4171 4171 3 4170 191
Health 762 2716 2716 3 2714 254
Offshore-leaks 1115 4177 4177 3 4176 372
Twitch 409 1978 1978 3 1977 136
Yelp-review 1089 2897 2898 2 2896 544
Yelp-user 1060 6161 6161 3 6160 353
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Figure 12: Maximum RSS (Resident Set Size) of the validators
over the benchmark schemas for increasing input sizes.

almost the same memory footprint. This is because they all use
the SIMD-JSON [33] parser. The memory footprint of our DJA im-
plementation remains small, even for the Clang dataset that has
the largest document height within the benchmark (height 280).
As the input increases, the advantage of our streaming approach
(in terms of memory footprint) increases compared to the offline
algorithms. These results show the relevance of our tool for dealing
with schema validation over large documents.

Throughput. Table 4 presents the throughput (in MB/s) of the
tools over the Database benchmark.We observe that, for all datasets,
DJA is the fastest tool. The second fastest tool is AJV. We believe
that the speed of AJV can be attributed to its code generation feature.
The speedup ratio of our implementation is between 1.2× (for Yelp-
user) and 3.8× (for Fraud-detection) compared to AJV. This shows
that our DJA implementation is competitive with the other tools in
terms of throughput. Therefore, our implementation uses a small
amount of memory (∼2MB on average) compared to the offline



Table 4: Average throughput (inMB/s) for AJV, Boon, JSR, DJA
and Rec. Input size is fixed to the largest input size supported
by the tools. The Speedup column is the ratio DJA/AJV.

Dataset AJV Boon JSR DJA Rec Speedup

AirBnB 355 135 156 457 106 1.3
ArXiv 360 273 303 900 264 2.5
Clang 220 94 97 370 81 1.7
Corporations 240 179 203 552 85 2.3
Crime 290 124 140 406 104 1.4
EclipseLink 545 367 471 787 335 1.4
Estate 213 134 145 481 108 2.3
Euro 220 106 121 354 101 1.6
Foot-events 144 91 101 351 66 2.4
Fraud-detection 83 76 90 338 66 3.8
Health 209 133 152 454 111 2.2
Offshore-leaks 367 142 160 524 106 1.4
Twitch 188 65 76 307 58 1.6
Yelp-review 723 321 352 1218 289 1.7
Yelp-user 1152 378 411 1395 329 1.2

Table 5: Running time and memory usage of the tools over
the Corpus benchmark. Total duration in seconds, average
and max durations in milliseconds, memory in MB.

tool dur. avg. dur. max. dur. avg. mem max. mem

DJA 595 21 65 2 3
AJV 1651 60 354 107 309
JSR 1739 63 144 119 332
Boon 2020 73 316 119 332
Rec 2186 79 694 118 331

tools that construct the parse tree (which can take up to a few GB
for databases), and is also faster.

5.4 Corpus Benchmark
The Corpus benchmark [5] consists of a large collection of JSON
schemas collected in 2020 from open-source GitHub repositories.
We filter out the schemas that cannot be fully resolved locally (be-
cause they have external references). We compare the performance
of the offline validators AJV, Boon, JSR and Rec against our stream-
ing tool DJA over the remaining schemas. For each schema, we
generate a valid input document using our input generator. The
size of the each input document is roughly 10MB.

Performance Results. Table 5 summarizes the duration and mem-
ory footprint for all tools over the Corpus benchmark. The column
‘duration’ gives the total running time to process the entire Corpus
benchmark (almost 30,000 schemas). The column ‘average duration’
(resp., ‘maximum duration’) gives the average (resp., maximum)
per-schema running time.

The results show that DJA has the smallest total duration, being
at least 3× faster than the offline algorithms, and indicate that our
DJA-based algorithm can compete against optimized implemen-
tations such as AJV. We also observe that the average memory
footprint of DJA is orders of magnitude smaller than that of the
offline tools. Among the offline tools, AJV has the smallest average
memory footprint at around 107MB. Boon, JSR and Rec all use
the SIMD-JSON parser, and we observe that they have the same
average memory footprint. This indicates that the maximum RSS
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Figure 13: Relationship between throughput and average
token size over the Corpus benchmark.

measurement is determined by the size of the parse tree that is
stored in memory. As expected, our DJA tool has a constant mem-
ory footprint as it is a streaming implementation. Compared to the
other offline tools, AJV uses less memory, which is consistent with
the observations we had for the database benchmark.

Throughput versus Average Token Size. Fig. 13 presents the rela-
tionship between throughput (in MB/s) and the average token size
of the input document (in number of bytes). We observe that, for
all tools, the throughput is influenced by the average token size.
This is expected because the validation algorithm has to process
each token of the input document. If the validator is given fewer
tokens for the same input document size, then the validation time
decreases and hence the throughput increases.

5.5 Summary of Main Observations
We conclude the section with a discussion of our main observations.

Summary of RQ1. For large input documents (between 100MB
and 10GB) of the Database benchmark, our tool DJA reduces the
memory footprint between 65 and 557 times. For the smaller input
documents (roughly 10MB) of the Corpus benchmark, DJA uses
only 2MB (overestimation) of memory on average. So, the memory
footprint of DJA is more than 50 times smaller compared to AJV.
These results indicate that DJA can provide significant memory
footprint reduction for many practical workloads.

Summary of RQ2. For the first two micro-benchmarks of §5.2
(i.e., the conjunction-of-objects and disjunction-of-objects schema
families), our DJA-based algorithm has𝑂 (𝑛) running time, whereas
the other tools have𝑂 (𝑚·𝑛) running time. For the Database and Cor-
pus benchmarks, DJA has good performance (in terms of through-
put) against the other tools. DJA is up to 3.8× faster for Database
and has an average speedup of almost 3× for Corpus. So, DJA is
competitive against other tools.

6 RELATEDWORK
Schema validation has been explored in the context of both XML and
JSON, more specifically, for the DTD [21], XML Schema [10, 56], and
JSON Schema [27] languages.Offline algorithms for JSON schema
validation have been described in [13, 14, 44]. These algorithms
perform a recursive traversal of the JSON document AST (parse tree)
while checking the satisfaction of the relevant subschemas. The
main drawback of these offline algorithms is the memory needed
to store the parse tree of the document.



To tackle the issue of high memory usage, [18, 47, 48] have
considered the use of Finite State Machines (FSM) to validate
DTDs in an online fashion. The authors of [48] show that nondeter-
ministic automata can be used for non-recursive DTD validation.
Later, [18] uses the notion of one-unambiguity [15] to propose
a DFA construction for non-recursive DTD validations when all
regexes are one-unambiguous. As a follow-up of [48], [47] refines
the subclass of streaming recursive DTDs where validation can be
performed with an FSM. The paper [40] proposes a block-by-block
algorithm for parallel streaming validation where each block is
processed by a Boolean circuit. It demonstrates that validation for
non-recursive DTDs can be performed with AC0 circuits and iden-
tifies a subclass that can be validated withWLAC0 circuits. These
FSM-based methods do not extend to JSON schemas. By default,
JSON objects may contain additional keys, each with a valid JSON
value. Since the membership problem for the Dyck-2 language of
well-parenthesized/bracketed words requires a stack [36], checking
for JSON validity also requires an unbounded stack, which makes
FSMs insufficient for most JSON schemas.

Another approach is based on the more expressive model of
One-Counter Automata [7, 22, 23]. The paper [18] gives sufficient
conditions for recursive DTDs to be validated by a one-counter
automaton. More recently, [9] extends one-counter automata with
𝑘 registers to store information about relevant nodes and use the
counter to store the current depth. While this technique can help
support more schemas using constant memory, it faces the same
limitation as FSM regarding JSON schema validation and cannot
be used to check for validity of JSON documents.

To overcome the limitations of FSMs and counter automata, stack-
based approaches based on Visibly Pushdown Automata [3]
(VPAs) have been proposed for streaming schema validation. In
[48], a deterministic automaton with a bounded stack, similar to
VPAs, is proposed for schema validation of recursive DTDs. More
recently, [31] has proposed a multi-pass algorithm for DTD val-
idation based on the First-Child-Next-Sibling encoding of XML
trees with 𝑂 (log2 𝑛) space complexity and 𝑂 (log𝑛) time per item.
While this approach has a low memory footprint, [32] shows that
for every DTD one can construct a deterministic modular VPA [2]
with constant time per symbol and space bounded by the docu-
ment height, which is more efficient than the multi-pass algorithm.
JSON’s unordered keys make VPAs impractical for schema valida-
tion, as VPAs have to encode every possible key order. A solution
for this issue is explored in [16]. This work uses a learning algo-
rithm to build a VPA for a given schema with a fixed key ordering
and then relies on a “key graph” to succinctly store all the possible
reordering of the keys. Compared to our DJA approach, the learned
VPA approximates the original JSON Schema, and may take sev-
eral days to learn the automaton for a single schema, making the
approach difficult to use in practice.

Several works [4, 13, 44] are concerned with formalizing the
JSON Schema [27] language. Pezoa et al. [44] formalize the syntax
and semantics of JSON Schema. They also show that the validation
problem is PTIME-complete. If the schema does not contain the
uniqueItems keyword, schema validation can be performed in
time 𝑂 (𝑚 · 𝑛), where𝑚 is the size of the schema and 𝑛 is the size
of the JSON document. Bourhis et al. [13] consider the notion of

well-formedness for recursive schemas to prevent infinite recursion.
Attouche et al. [4] present a formal description of newer versions
of JSON Schema, where dynamic references are used to refine a
data structure. They show for “modern” JSON Schema (draft 2019-
09) that dynamic references make the validation problem PSPACE-
complete. Habib et al. [24] study the problem of subschema checking
to find bugs between versions of a given JSON schema. They present
a procedure to canonicalize JSON schema into a simpler language
over which the subschema check is performed.

The incremental validation problem [6, 8] is about validating
an XML document after an update is done (insertion, deletion, or
renaming), a problem that is highly relevant to databases.

7 LIMITATIONS AND CONCLUSION
Limitations & Future Work. Our DJA-based tool supports all

schemas that can be written using our schema language JSL, which
encompasses the core features of JSON Schema. It does not, however,
fully support JSON Schema yet. In future work, we plan to include
support for more features. We will support a feature corresponding
to the prefixItems keyword that is used to constrain the elements
of a finite prefix of an array. For example,

"prefixItems": [{"type": "string"}, {"type": "number"}]

requires that the first element is a string, and the second element is
a number. We can extend JSL with a construct Arr(𝑠0, . . . , 𝑠𝑛−1; 𝑠),
where 𝑠0, . . . , 𝑠𝑛−1 are schemas constraining the first 𝑛 elements
of an array. Cardinality constraints for arrays and objects can be
easily handled by maintaining (on the stack) the current size of an
object or an array. Pattern properties and predicates over primitive
values (e.g., numbers and strings) can be handled when the JSON
tokens are generated (by enriching tokens with additional relevant
information). Regular expressions (“regexes”) are used with the
keyword patternProperties and with string patterns (keyword
pattern). Simple regexes could be integrated with the tokenizer
for efficiency (see, e.g., [35]), but more challenging regexes could
potentially require specialized algorithms for efficient matching
(see, e.g., [30, 34] for bounded repetition, [17, 37] for lookaround
assertions, [38] for the semantic issues of disambiguation, and [42]
for backreferences). Another feature that we plan on implement-
ing (keyword contains) requires that at least one array element
satisfies a specified schema. It can be implemented with a DJA
by extending the array stack entry Arr(𝑛) with a Boolean value
indicating whether an element satisfying 𝑠 has been encountered.

Conclusion. We have investigated the problem of streaming
schema validation for large JSON documents. We have proposed a
model of JSON automata called DJA for the streaming validation of
JSON schemas. We have shown that our DJA-based implementation
greatly reduces the memory footprint for schema validation while
maintaining competitive throughput compared to the existing tools.
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