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Abstract. We investigate the formalization, using the Coq proof as-
sistant, of a procedure for constructing online monitors from specifica-
tions written in past-time metric temporal logic (MTL). We employ an
algebraic quantitative semantics that encompasses the Boolean and ro-
bustness semantics of MTL and we interpret formulas over a discrete
temporal domain. The class of Moore machines, a kind of string trans-
ducers, is used as a formal model of online monitors. The main result is
that there is a compositional construction from formulas to monitors, so
that each monitor computes (in an online fashion) the semantic values of
the corresponding formula over the input stream. From our Coq formal-
ization, we extract OCaml code for executable online monitors. We have
compared the performance of our monitoring framework with Reelay, a
state-of-the-art tool for monitoring temporal properties.

Keywords: Online Monitoring · Formal Verification · Quantitative
Semantics.

1 Introduction

Runtime verification is a lightweight technique for checking that a system ex-
hibits the desired behavior. It is often performed in an online fashion, which
means that the execution trace of the system is observed as it is being gener-
ated. This trace typically consists of one or more signals and event streams. A
monitor program runs in parallel with the system, consumes the system trace
incrementally, and outputs at every step a value that summarizes the current
state of the system. This value can be a Boolean indication of whether an inter-
esting event or pattern has been identified, or it can contain richer quantitative
information. There is a substantial amount of existing work on formalisms for
specifying monitors, as well as on algorithms for their efficient execution.

The specification of temporal patterns is often driven by logical formalisms.
Linear Temporal Logic (LTL) is one such widely utilized formalism which admits
efficient algorithms. Since many applications in the domain of cyber-physical sys-
tems frequently deal with comparison between numerical signals, Signal Tem-
poral Logic (STL), an extension of LTL with predicates allowing comparison
with numerical values, is also popular. It is also common to constrain certain



2 A. Chattopadhyay and K. Mamouras

temporal behaviors within specified time intervals, which is a capability referred
to as a metric extension of temporal logic (MTL).

While temporal logic facilitates the specification of temporal properties, it is
equally important to have accompanying algorithms. The notion of a monitor is
an algorithm which analyzes given traces for a specific temporal property. In an
offline setting, the trace is available in its entirety. In contrast, online monitors
are meant to be attached to running systems, so that they may report interesting
(or critical) events as they happen, potentially so that a supervisor can act in
real time. Thus, they must analyze system traces incrementally (fragment by
fragment) as they evolve and this must be done efficiently: each update should
be handled quickly.

The standard semantics for temporal logic is qualitative, which means that
monitors classify traces only in a binary pass/fail manner. However, this is less
than sufficiently informative: some violations can be more serious than others,
and on the other hand, some cases of satisfaction could be close to the edge
of failure. In some cases, we may be able to apply some corrective actions if
we could tell that our system is approaching a potential violation. Indeed, in
realistic systems with continuous dynamics, some degree of tolerance must be
allowed since every value is accurate only up to the extent of measurement errors.
This encourages us to consider quantitative semantics for our formalisms, so that
we can quantify how robustly the observed behavior fits the desired specification
[18].

The variant of metric temporal logic we consider in this paper is interpreted
over a discrete temporal domain. We also consider a past-time only fragment of
the logic. In the setting of online monitoring we need to reactively respond to
the patterns in what we have seen so far. So, using a past-time fragment makes
sense and provides a clean semantics. Online monitoring with future obligations
has been considered, but these can be more expensive.

With Coq, an interactive theorem prover, we formalize the semantics of
our temporal logic. The implementation of our monitoring algorithms are done
within Coq, and a proof of correctness is given. Formal proofs, like the ones
described in Coq, are thoroughly rigorous and machine checkable. This gives us
confidence in the correctness of our implementations. With the extraction mech-
anism of Coq, we can obtain executable OCaml code directly from our verified
implementation.

As mentioned earlier, a strong motivation for using a quantitative semantics
is to quantify how robustly a signal fits a given specification in view of potential
perturbations. A very effective way to do so for STL specifications is to interpret
formulas over real numbers and interpret the logical connectives ∨ and ∧ as max
and min respectively [16]. In our work, we use a slightly more general framework,
interpreting our formulas over arbitrary bounded distributive lattices. This ab-
stract algebraic framework enables a simpler verification approach and, as we
will discuss soon, does not hurt the performance of our algorithms.

In our formalization, we model online monitors as Moore machines. They
are abstract machines whose state evolves as fragments of a trace are fed in.
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Each state of the machine is associated with a value that represents the current
output of the monitor. We follow a compositional approach for our implementa-
tion and proofs. This is done with the help of combinators, which are constructs
that compose Moore machines in different ways (possibly with other data struc-
tures) so that their behaviors can be composed or combined. Corresponding to
each Boolean or temporal connective in our specification language, we identify
a combinator on Moore machines which implements the desired behavior.

We observe that formulas in our temporal logic can be rewritten so that only
a few combinators are necessary: (1) combinators which combine the output
of Moore machines running in parallel by applying a binary operation on their
respective outputs, (2) combinators which compute a running aggregate on the
results of a Moore machine, (3) combinators which compute running aggregates
on sliding windows, and (4) combinators which withhold the results of a ma-
chine until a given number of updates. We can see that most of these can be
approached in a straightforward way. Applying a binary operation to the current
output values of two running machines can be done with a stateless construction.
Computing running aggregates efficiently can be achieved by storing the aggre-
gate of the trace seen so far. In order to withhold the results of a given machine,
we can simply store them in a queue of a fixed length. Computing aggregates
over sliding windows is slightly trickier. This is usually achieved with an algo-
rithm that maintains monotonic wedges [23]. However, this assumes that the
semantic values are totally ordered, which is not necessarily true in our setting
of lattices. Instead, we use an algorithm that is inspired from the well-known im-
plementation of a queue data structure using two stacks, popular in functional
programming. A variant of this algorithm can be used for computing sliding-
window aggregates for any associative operation in a way that every execution
step of the monitor needs O(1) amortized time.

Outline of the paper. In Sect. 2, we first introduce lattices and then present
the syntax and semantics of our temporal specification language. In Sect. 3,
we give a formal definition of Moore machines, present a collection of Moore
combinators, and discuss in detail their implementation. In Sect. 4, we discuss
the extraction of executable OCaml code from the Coq scripts and we compare
its performance against the Reelay tool [32]. Finally, in Sect. 5, we discuss several
different quantitative semantics for Signal Temporal Logic, various algorithmic
approaches to online monitoring, and we also give a brief overview of related
efforts to produce formally verified monitors.

2 Metric Temporal Logic
In this section, we review Metric Temporal Logic, which will be the formalism
that we consider here for specifying quantitative properties. We use bounded
distributive lattices as the semantic domain for our logic. While this abstract
setting is not usually where Metric Temporal Logic is interpreted, we will see
that the standard qualitative (Boolean) and quantitative (robustness) semantics
can be obtained simply by choosing the appropriate lattice.
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2.1 Lattices

A lattice is a partial order in which every two elements have a least upper bound
and a greatest lower bound. We will use an equivalent algebraic definition.

Definition 1. A lattice is a set A together with associative and commutative
binary operations u and t, called meet and join respectively, that satisfy the
absorption laws, i.e, x t (x u y) = x and x u (x t y) = x for all x, y ∈ A.

Let A be a lattice. Using the absorption laws it can be shown that t is
idempotent: x t x = x t (x u (x t x)) = x for every x ∈ A. Similarly, it can
also be shown that u is idempotent. Define the relation v as follows: x v y iff
x t y = y for all x, y ∈ A. The relation v is a partial order. It also holds that
x v y iff x u y = x. For all x, y ∈ A, the element x t y is the supremum (least
upper bound) of {x, y} and the element x u y is the infimum (greatest lower
bound) of {x, y} w.r.t. the order v.

Definition 2. A lattice A is said to be bounded if there exists a top element > ∈
and a bottom element ⊥ ∈ A such that ⊥ t x = x and x u > = x (equivalently,
⊥ v x v >) for every x ∈ A.

Let A be a bounded lattice. It is easy to check that xt> = > and ⊥ux = ⊥
for every x ∈ A. For a finite subset X = {x1, x2, . . . xn} of a bounded lattice,
we write

⊔
X for x1 t x2 t · · · t xn and similarly ⊔X for x1 u x2 u · · · u xn.

Moreover, we define
⊔
∅ to be ⊥ and ⊔∅ to be >. So,

⊔
X is the supremum of

X and ⊔X is the infimum of X.

Definition 3. A lattice A is said to be distributive if xu(ytz) = (xuy)t(xuz)
and x t (y u z) = (x t y) u (x t z) for all x, y, z ∈ A.

Example 4. Consider the two-element set B = {>,⊥} of Boolean values, where
> represents truth and ⊥ represents falsity. The set B, together with conjunction
as meet and disjunction as join, is a bounded and distributive lattice.

Example 5. The set R of real numbers, together with min as meet and max as
join, is a distributive lattice. However, (R,min,max) is not a bounded lattice. It
is commonplace to adjoin the elements ∞ and −∞ to R so that they serve as
the top and bottom element respectively.

2.2 Syntax and Semantics

We fix a set D of data items. A trace is a finite sequence over D, and D∗ is the
set of all traces. We write ε for the empty trace, and |w| for the length of a trace
w ∈ D∗. For i ∈ N and w ∈ D∗ with i ≤ |w|, we write w[−i] to denote the
prefix of w obtained by removing the last i elements of w. In particular, it holds
that w[−0] = w and w[−i] = ε when i = |w|. We also fix a bounded distributive
lattice V, whose elements are quantitative truth values that represent degrees of
truth or falsity. Our quantitative semantics will associate a truth value with each
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formula-trace pair. The set Φ of temporal formulas that we consider are given
by the following grammar:

φ,ψ ::= f : D → V | φ ∨ ψ | φ ∧ ψ | PIφ | HIφ | φ SI ψ | φ SI ψ,

where I is an interval of the form [a, b] or [a,∞) with a, b ∈ N. For every temporal
connective X ∈ {P,H,S}, we will write Xa as an abbreviation for X[a,a] and X
as an abbreviation for X[0,∞). We interpret formulas from Φ over traces D∗ using
the robustness interpretation function ρ : Φ× D∗ → V, defined as follows:

ρ(f, ε) = ⊥
ρ(f, w · d) = f(d), where d ∈ D

ρ(φ ∨ ψ,w) = ρ(φ,w) t ρ(ψ,w)
ρ(φ ∧ ψ,w) = ρ(φ,w) u ρ(ψ,w)

ρ(PIφ,w) =
⊔
i∈I

i<|w|

ρ(φ,w[−i])

ρ(HIφ,w) = ⊔

i∈I
i<|w|

ρ(φ,w[−i])

ρ(φ SI ψ,w) =
⊔
i∈I

i<|w|

(
ρ(ψ,w[−i]) u ⊔

j<i

ρ(φ,w[−j])
)

ρ(φ SI ψ,w) = ⊔

i∈I
i<|w|

(
ρ(ψ,w[−i]) t

⊔
j<i

ρ(φ,w[−j])
)

Notice that ρ(Paφ,w) = ⊥ and ρ(Haφ,w) = > whenever a ≥ |w|. Note that the
temporal language that we consider does not include negation. However, this
does not limit expressiveness as we discuss in the examples below.

Example 6. Extending Example 4, choose D to be Bk and set V to B. The
set of functions from Bk → B considered may be restricted to projections
πi(b1, . . . bi, . . . bk) = bi and negated projections πi(b1, . . . bi, . . . bk) = bi. This
gives us the standard qualitative semantics for metric temporal logic. Formulas
with negation can be expressed as equivalent formulas in negation normal form
(NNF) in a fairly standard way by pushing negation inside while interchanging
operators for their dual operators.

Example 7. We may also express a past time version of STL interpreted over
discrete time in this framework. To do so, take D = Rk. A qualitative semantics
is obtained by taking V to be B and restricting the functions to comparisons
of the form (r1, . . . ri . . . rk) 7→ ri ∼ c where c ∈ R and ∼ ∈ {≤,≥,=}. A
quantitative semantics can be obtained by taking V to be R ∪ {∞,−∞} (as in
Example 5) and considering functions of the form (r1, . . . ri . . . rk) 7→ ri − c or
(r1, . . . ri . . . rk) 7→ c − ri. Even in the quantitative setting, STL formulas with
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negation can be presented in our framework by considering a NNF, again by
‘pushing’ negation inside while interchanging operators for their dual operators
and replacing ri − c with c− ri.

Since we are interpreting formulas over discrete traces, our logic is essen-
tially equivalent to LTL with a “Previous” operator. In other words, temporal
connectives (including S and S; see Lemma 13) with bounded intervals can be
rewritten in terms of multiple compositions of the Previous operator instead.

3 The Monitoring Problem

Monitoring is analyzing a trace for specific patterns. For quantitative properties,
this could be thought of as applying a valuation function on a trace. In an online
setting, the trace is supplied to the monitor incrementally. To elaborate, the
monitor is fed in fragments of the trace one at a time and the monitor is required
to evaluate the quantitative property on the trace prefix seen so far. We intend
to discuss a mechanism for monitoring quantitative properties denoted by MTL
formulas.

3.1 Moore Machines

We will use Moore machines, a class of sequence transducers, as a formal model
of online monitoring algorithms.

Definition 8. Let A and B be sets. A Moore machine with input items from A
and output values in B is a tuple (St, init, mNext, mOut) where St is a (possibly
infinite) set of states, init ∈ St is the initial state, mNext : S × A → S is a
transition function which transitions the state of the machine upon seeing an
input from A, and mOut : S → B associates an output with the current state.
We write Moore(A,B) for the set of all Moore machines with inputs from A and
outputs from B.

While this is the standard definition of Moore Machines found in the liter-
ature, we use an equivalent, co-inductive definition in our formalization. In the
co-inductive view, the states are not explicitly expressed, but described directly
in terms of their extensional behavior.

CoInductive Moore (A B: Type) := {
mOut: B;
mNext: A -> Moore A B;

}.

The functions mNext and mOut denote the incremental update and the current
output of the machine. More generally, the machine also associates with every
trace a value, which can be simply obtained by feeding in the entire trace, element
by element. In this sense, a machine denotes a quantitative property, formally
captured in the definition of gFinal below.
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Definition 9. Let m ∈ Moore(A,B). Then, gNext(m) : A∗ → Moore(A,B)
is defined by gNext(m, ε) = m and gNext(m,w · a) = mNext(gNext(m,w), a).
gFinal(m) : A∗ → B is defined as gFinal(m,w) = mOut(gNext(m,w)).

For a quantitative property of traces, i.e, a function f : D∗ → V, we wish to
construct a Moore machine that computes f . We restrict our focus to quantita-
tive properties which can be expressed by MTL formulas.

Definition 10. Let φ ∈ Φ and m ∈ Moore(D,V). We say that the Moore ma-
chine m implements a monitor for φ if gFinal(m,w) = ρ(φ,w) for all w ∈ D∗.

Example 11. Following Definition 8, consider the machine m : Moore(V,V)
with states V × V, initial state (⊥,⊥), mOut((u, v)) = u and mNext((u, v), w) =
(v, w). It holds that gFinal(m, ε) = gFinal(m, v1) = ⊥ and gFinal(m, v1v2) =
v1, gFinal(m, v1v2v3) = v2, etc. The machine m implements a monitor for the
formula P1(v 7→ v) in the sense of Definition 10.

Stated formally, the monitoring problem is to find a translation toMonitor :
Φ→ Moore(D,V) so that given any φ ∈ Φ, toMonitor(φ) is a monitor for φ.

3.2 Moore Combinators

Combinators are compositional constructs that let one define new machines in
terms of existing ones. Our approach towards solving the monitoring problem is
to find combinators which correspond to the temporal and Boolean connectives
of MTL. With these combinators, a monitor for a given formula can be specified
by induction on the structure of the formula.

Proceeding with the idea above, we identify the key constructs which are
necessary in achieving the expressive power of MTL. We say that the formulas
φ and ψ are equivalent, and we write φ ≡ ψ, if ρ(φ,w) = ρ(ψ,w) for all w ∈ D∗.

Lemma 12. The following identities hold:

P[a,b]φ ≡ PaP[0,b−a]φ (1)
H[a,b]φ ≡ HaH[0,b−a]φ (2)

φ S[a+1,b] ψ ≡ H[0,a]φ ∧ Pa+1

(
φ S[0,b−a] ψ

)
(3)

φ S[a+1,b] ψ ≡ P[0,a]φ ∨ Ha+1

(
φ S[0,b−a] ψ

)
(4)

P[a,∞)φ ≡ PaP[0,∞)φ (5)
H[a,∞)φ ≡ HaH[0,∞)φ (6)

φ S[a+1,∞) ψ ≡ H[0,a]φ ∧ Pa+1

(
φ S[0,∞) ψ

)
(7)

φ S[a+1,∞) ψ ≡ P[0,a]φ ∨ Ha+1

(
φ S[0,∞) ψ

)
(8)

The proofs of these identities are straightforward. Proving the identities in-
volving S (or S) requires the distributivity axioms, which motivates the need for
considering distributive lattices.
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Lemma 13. The following identities hold:

φ S[0,a] ψ ≡ (φ S ψ) ∧ P[0,a]ψ (9)
φ S[0,a] ψ ≡ (φ S ψ) ∨ H[0,a]ψ (10)

Proof. We will only prove the first identity, since the second one can be proved
with analogous arguments. Let w ∈ D∗ be an arbitrary trace. We define si =
ρ(φ,w[−i]) and ti = ρ(ψ,w[−i]) for every i ∈ N. Then, we have that

ρ(φ S[0,a] ψ,w) =
⊔
i≤K

(
ti u ⊔

j<i

sj

)
ρ(φ S ψ,w) =

⊔
i≤|w|−1

(
ti u ⊔

j<i

sj

)
= ρ(φ S[0,a] ψ,w) t

⊔
K<i≤|w|−1

(
ti u ⊔

j<i

sj

)
ρ(P[0,a]ψ,w) =

⊔
i≤K

ti

where K = min(a, |w| − 1). We have to prove that L = R u Q, where L =
ρ(φ S[0,a] ψ,w), R = ρ(φ S ψ,w) and Q = ρ(P[0,a]ψ,w). From K ≤ |w| − 1 we
obtain that L v R. It also holds that L v Q because ti u ⊔j<i sj v ti for every
i ≤ K. It follows that L v R uQ. It remains to show that R uQ v L. Since

R uQ =
(
L t

⊔
K<i≤|w|−1

(
ti u ⊔

j<i

sj

))
uQ

= (L uQ) t
⊔

K<i≤|w|−1

(
ti u ⊔

j<i

sj uQ
)

= (L uQ) t
⊔

K<i≤|w|−1

⊔
k≤K

(
ti u tk u ⊔

j<i

sj

)
,

it suffices to establish that L uQ v L (which is true) and ti u tk u ⊔j<i sj v L
for every i and k with K < i ≤ |w| − 1 and k ≤ K. Since k < i, we conclude
that ti u tk u ⊔j<i sj v tk u ⊔j<k sj v L. ut

Remark 14. In the qualitative setting, the identities in Lemma 13 are intu-
itively clear, but they require a more careful argument in the quantitative set-
ting. They have been used and proven in [15] for the lattice (R,min,max), but
the given proof does not generalize to the class of lattices that we consider here.
As we can see in the proof of Lemma 13, there is a subtlety in dealing with the
terms of ρ(φ S ψ,w) with index i = K + 1, . . . , |w| − 1.

The first set of identities allows us to express P[•,•], S[•,•] in terms of P[0,•],
S[0,•] and P•. The second set of identities implies that S[0,•] can be replaced by S
and P•. Thus, the only additional constructs required in expressing the bounded
temporal operators are P• and P[0,•] (and their duals).

We present in Figure 1 a summary of the combinators that we will consider.
Each combinator can be thought of as the implementation of the corresponding
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f : D → V
mAtomic f : Moore(D,V)

m : Moore(D,V) k : N
mDelay k m : Moore(D,V)

m : Moore(D,V) k : N
mDelay k m : Moore(D,V)

m1 : Moore(D,V) m2 : Moore(D,V)
mAnd m1 m2 : Moore(D,V)

m1 : Moore(D,V) m2 : Moore(D,V)
mOr m1 m2 : Moore(D,V)

m1 : Moore(D,V) m2 : Moore(D,V)
mSince m1 m2 : Moore(D,V)

m1 : Moore(D,V) m2 : Moore(D,V)
mSince m1 m2 : Moore(D,V)

m : Moore(D,V)
mSometime m : Moore(D,V)

m : Moore(D,V)
mAlways m : Moore(D,V)

m : Moore(D,V) k : N
mSometimeWithin k m : Moore(D,V)

m : Moore(D,V) k : N
mAlwaysWithin k m : Moore(D,V)

Fig. 1. Summary of Moore Combinators

Boolean or temporal connective. The key observation is that this association
between combinators on Moore machines and connectives respect the implemen-
tation relation (Definition 10) between machines and formulas. E.g., if m is a
monitor for φ, we expect mSometimeWithin k m to be a monitor for P[0,k]φ.

We define the translation function toMonitor : Φ→ Moore(D,V) as in Figure
2. We can think that toMonitor(φ) is computed by recursively replacing the
connectives in φ with Moore combinators. The correctness of toMonitor is a
consequence of the correctness of the combinators in the sense described above.

Before we start describing each combinator in detail, we make some remarks
about the general organization of our implementation and formal proofs. There
is a lot of symmetry among these combinators that can be leveraged for econ-
omy of effort. One example is the presence of dual connectives, such as ∨ and
∧. This is why in many cases we focus on presenting these combinators in a
slightly general way before instantiating them specifically to Moore(D,V). As
discussed before, the correctness for each combinator is phrased in terms of pre-
serving the implementation relation – these theorems are indexed with the suffix
_correctness. These theorems are proven via lemmas indexed with the suffix
_final which characterize the most recent output of the Moore machine at a
fixed point in the computation. The proofs proceed by induction on the trace
seen so far. They require additional lemmas that establish invariants about the
state of a Moore machine as it evolves during the computation. These latter
lemmas are indicated with the suffix _state. These ideas are illustrated in the
construction of mAtomic in Figure 3.

Atomic Functions. In order to lift functions f : A → B to Moore(A,B), we
define the mLift combinator, as in Figure 3. Given an f : A → B and a value
init : B, it defines a Moore machine which computes f on the latest input and
initially emits init. We use the lemma mLift_state to describe the evolution
of the machine when an arbitrary stream prefix is fed. Using this, we also prove
mLift_final, which describes the final output of the machine after accepting
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Fixpoint toMonitor {A : Type} (f : Formula) : Moore A Val :=
match f with
| FAtomic _ g => mAtomic g
| FDelay _ n g => mDelay n (toMonitor g)
| FDelayDual _ n g => mDelayDual n (toMonitor g)
| FAnd _ g h => mAnd (toMonitor g) (toMonitor h)
| FOr _ g h => mOr (toMonitor g) (toMonitor h)
| FSometime _ g => mSometime (toMonitor g)
| FAlways _ g => mAlways (toMonitor g)
| FSince _ g h => mSince (toMonitor g) (toMonitor h)
| FSinceDual _ g h => mSinceDual (toMonitor g) (toMonitor h)
| FSometimeWithin _ hi g => mSometimeWithin hi (toMonitor g)
| FAlwaysWithin _ hi g => mAlwaysWithin hi (toMonitor g)
end.

Theorem toMonitor_correctness {A : Type} (f : Formula):
implements (toMonitor f) f.

Fig. 2. The toMonitor function

an arbitrary stream prefix. We define mAtomic by instantiating the parameter
init of mLift to ⊥. The Lemma titled mAtomic_correctness establishes that
mAtomic correctly translates atomic functions to corresponding monitors.

Pointwise Binary Operations. In Figure 4, we define the combinator mBinOp
that combines the output of two given machines using a binary operation. By
plugging in t and u as op, we can use mBinOp to implement the ∨ and ∧
connectives, respectively. Like in the case of mAtomic, the correctness of this
combinator is proven by establishing appropriate lemmas which describe the
behavior of mBinOp with gNextand gFinal. These let us prove, in particular,
that mAnd and mOr correctly implement formulas involving ∧ and ∨, respectively.

Delay Monitors. We view the implementation of Pa and Ha as a mecha-
nism that delays the output of a Moore Machine. For instance, the sequence
〈ρ(P2φ, a1a2a3), ρ(P2φ, a1a2a3a4)〉 is same as 〈ρ(φ, a1), ρ(φ, a1a2)〉. These oper-
ators preserve the order of the outputs, but delay them by a given constant.

This can be achieved using a queue maintained at a fixed length. For instance,
to implement Paφ, we maintain a queue of length a. Upon being given an input
item a ∈ D, we feed a to toMonitor(φ), enqueue the result and then return
what we obtain by dequeuing. This works since the dequeued element was the
result of toMonitor(φ) a turns ago. The queue needs to be initially filled with
a instances of ⊥ (or > in the case of Ha) since we have that ρ(Paφ,w) = ⊥ (or
ρ(Haφ,w) = >) when |w| > a.

Since Coq is based on a functional programming environment, functional
lists are the ordered collections that are the easiest for us to reason about and
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CoFixpoint mLift {A B: Type} (f : A -> B) (init : B) : Moore A B := {|
mOut := init;
mNext (a : A) := mLift f (f a) |}.

Lemma mLift_state {A B : Type}
(xs : list A) (x : A) (f : A -> B) (init : B) :

gNext (mLift f init) (xs ++ [x]) = mLift f (f x).
Lemma mLift_final {A B : Type}
(xs : list A) (x : A) (f : A -> B) (init : B):

gFinal (mLift f init) (xs ++ [x]) = f x.
Definition mAtomic {A : Type} (f : A -> Val) : Moore A Val :=

mLift f bottom.
Lemma mAtomic_correctness {A : Type} (f : A -> Val):

implements (mAtomic f) (FAtomic Val f).

Fig. 3. Establishing correctness of mAtomic.

work with. Functional lists are typically implemented via linked lists, which
means that in order to access the kth element of the list, one would have to
traverse k links and would spend O(k) time. This makes appending to the end
of the list expensive. However, obtaining or adding elements at the head (the
beginning) of the list is straightforward. Thus, these lists effectively behave as
stacks and sometimes we refer to them as such. We use the well-known technique
of implementing a queue with two functional lists, which we briefly discuss below.

A queue is represented by two lists front and rear. When an element is
enqueued, it is added to the head of the rear list. Thus, the rear list effectively
stores the elements of the queue in an order opposite to that in which they
were enqueued. When dequeing an element is required, the elements of rear
are reversed and placed in the front (thus restoring the order) and the head of
front is returned. As long as front is non-empty, subsequent dequeues may be
directly handled by returning the head of front.

In our use case, the queue is maintained at a fixed length, say k and every
enqueue is followed by a subsequent dequeue. Reversing rear into front takes
time O(k). However, we only need to do this every k turns, since front is filled
with k items whenever the reversal happens. Thus, every k turns, we do O(k)
work and only O(1) work is needed otherwise. This gives us an amortized time
complexity of O(1).

We implement this idea in the delayWith combinator in Figure 5. The key
lemma required in proving the correctness of the delayWith combinator shows
that the queue maintained always stores the last k-many outputs of the sub-
monitor. To formalize this, we define gCollect : Moore(A,B)× D∗ → V∗ as

gCollect(m, a1a2 · · · an) =
〈gFinal(m, ε), gFinal(m, a1), · · · , gFinal(m, a1a2 · · · an)〉.

We may now write the mentioned invariant as in delayWith_state, which is
established by induction on the input stream.
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CoFixpoint mBinOp {A B C D: Type} (op : B -> C -> D)
(m1: Moore A B) (m2 : Moore A C) : Moore A D :=

{|
mOut := op (mOut m1) (mOut m2);
mNext (a : A) := mBinOp op (mNext m1 a) (mNext m2 a)

|}.
Definition mAnd {A : Type} (m1 : Moore A Val)

(m2 : Moore A Val) : Moore A Val := mBinOp meet m1 m2.
Definition mOr {A : Type} (m1 : Moore A Val)

(m2 : Moore A Val) : Moore A Val := mBinOp join m1 m2.
Lemma mAnd_correctness {A : Type} (m1 m2 : Moore A Val) (f1 f2 : Formula):

implements m1 f1 -> implements m2 f2
-> implements (mAnd m1 m2) (FAnd Val f1 f2).

Lemma mOr_correctness {A : Type} (m1 m2 : Moore A Val) (f1 f2 : Formula):
implements m1 f1 -> implements m2 f2
-> implements (mOr m1 m2) (FOr Val f1 f2).

Fig. 4. The mBinOp combinator

Lemma delayWith_state {A B : Type} (init : B) (inf inb : list B)
(m : Moore A B) (xs : list A) (x : A):

forall initSeg, initSeg = [init] ++ inf ++ rev inb ->
forall k, k = length initSeg ->
forall str, str = initSeg ++ gCollect m xs ->
forall lastSeg, lastSeg = lastn k str ->

exists fr ba ii,
[ii] ++ fr ++ rev ba = lastSeg /\
k = length lastSeg /\
gNext (delayWith init inf inb m) (xs ++ [x])

= delayWith ii fr ba (gNext m (xs ++ [x])).

Fig. 5. Delay monitors.

Temporal Folds. The unbounded operators P and H can be thought of as a
running fold on the input stream, since ρ(Pφ,w · a) = ρ(Pφ,w) t ρ(φ,w · a).
Thus, to evaluate these operators in an online fashion, we only need to store the
robustness value for the trace seen so far. For P (resp., H), the robustness of
the current trace can then be obtained by computing the join (resp., meet) of
the current value and the stored one. In Figure 6, mAlways (resp., mSometime)
computes the robustness values corresponding to the H (resp., P) connectives by
computing the meet (resp., join) of the current value with the stored one.

Using the following identity, we may also view the computation of S as a
temporal fold, i.e, the robustness for φ S ψ may be calculated incrementally by
only storing the robustness value for the stream prefix so far.
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CoFixpoint mFoldAux {A : Type} (m : Moore A B)
(op : B -> B -> B) (st : B) : Moore A B :=
{| mOut := st;

mNext (a : A) := mFoldAux (mNext m a) (op st (mNextOut m a)) |}.
Definition mSometime {A : Type} (m : Moore A B) :=

mFoldAux m meet bottom.
Definition mAlways {A : Type} (m : Moore A B) :=

mFoldAux m join top.

Fig. 6. Temporal Folds

CoFixpoint mSinceAux {A : Type}
(m1 m2 : Moore A Val) (pre : Val) : Moore A Val :=
{| mOut := pre;

mNext (a : A) :=
mSinceAux (mNext m1 a) (mNext m2 a)
(join (mNextOut m2 a) (meet (mNextOut m1 a) pre)) |}.

Definition mSince {A : Type} (m1 m2 : Moore A Val) :=
mSinceAux m1 m2 (mOut m2).

Fig. 7. Monitoring Since

Lemma 15. For all w ∈ D∗ and a ∈ D, we have that

ρ(φ S ψ,w · a) = ρ(ψ,w · a) t (ρ(φ S ψ,w) u ρ(φ,w · a)).

This is a well known equality and can be proved by using distributivity in a
straightforward way. A proof of this for the (R,max,min) lattice appears in [13].

Using the equality of Lemma 15, mSince can be implemented as in Figure
7. The correctness of mSince is established by proving invariants on mSinceAux,
which is straightforward once the equality above has been established.

Windowed Temporal Folds. For the operators P[0,a] or H[0,a], the strategy
above needs to be modified, since the fold is over a sliding window, rather than
the entire trace. For this purpose, we use a queue like data structure (dubbed
aggQueue, henceforth) which also maintains sliding window aggregates, in addi-
tion. An extended discussion of such a data structure can be found in [8].

Similar to the queues used in the delay monitors, aggQueue consists of two
functional lists, the rear into which elements are inserted upon enqueing and
the front out of which elements are evicted upon dequeing. The elements of
rear and front are pairs: one of them is the enqueued element and the other
represents a partial aggregate. For convenience, we denote by contentsff(resp.,
contentsrr) the enqueued elements currently in front (resp., rear) and by
aggsff(resp., aggsrr) the partial aggregates currently in front (resp., rear).
The aggregate values and the enqueued items are related in the following manner:
(1) The ith-last element of aggsff is the aggregate of the last i elements of
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CoFixpoint mWinFoldAux {A : Type} (qq : aggQueue)
(m : Moore A B) : Moore A B :=
{| mOut := op (aggOut qq) (mOut m);

mNext (a : A) :=
mWinFoldAux (aggDQ (aggEnQ (mOut m) qq)) (mNext m a); |}.

Definition initAggQ (n : nat) : aggQueue :=
{| front := repeat (unit, unit) (S n)
; rear := [] |}.

Definition mWinFold {A : Type} (m : Moore A B) (n : nat) : Moore A B :=
mWinFoldAux (initAggQ n) m.

Lemma mWinFold_state {A : Type} (m : Moore A B)
(n : nat) (xs : list A) (x : A) : exists qq,
gNext (mWinFold m n) (xs ++ [x]) = mWinFoldAux qq (gNext m (xs ++ [x]))
/\ contentsQ qq = lastn (S n) (repeat unit (S n) ++ gCollect m xs)
/\ aggsffInv qq
/\ aggsrrInv qq.

Fig. 8. Windowed Temporal Folds

contentsff (2) The ith-last element of aggsrr is the aggregate of the last i
elements of contentsrr taken in the reverse order. Given these invariants, it
is easy to see that the aggregate of the entire queue can be computed as the
aggregate of the heads of aggsff and aggsrr.

We maintain these invariants in the following way: Upon enqueue, we simply
add the enqueued element to the head of rear along with the aggregate of the
element with the head of aggsff. Performing a dequeue is easy when front is
non-empty: we simply remove the element at its head. When front is empty, the
contents of contentsrr are added to front while recalculating the aggregate,
maintaining the invariant above.

Writing op for t (resp., u) and unit for ⊥ (resp., >) in Figure 8, we define
the combinator mWinFold. Given a constant k, mWinFold maintains an aggQueue
initialized with k instances of ⊥ (or >). When a new input is available, mWinFold
enqueues the result of the corresponding submonitor into queue and dequeues
the element which was enqueued k turns ago. The output of mWinFold is simply
set to be the aggregate of the elements in the queue. Using a similar argument
as before, we can see that the invocations of mNexton mWinFold run in O(1)
amortized time. See Figure 9 for an illustration of the running of mWinFold.

The correctness of the algorithm can be established via mWinFold_state. In
essence, it states that the contentsff and contentsrr together store the last
k elements of the stream, and that the invariants on aggsff and aggsrr are
maintained.

Remark 16. The space required by the described algorithm is constant in terms
of the size of the input trace but exponential in the size of the constants that
appear in the formula. This exponential is unavoidable since computing the value
of Pap would require storing the last a values of p.
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contentsff aggsff contentsrr aggsrr aggOut
⟨⊥,⊥,⊥⟩ ⟨⊥,⊥,⊥⟩ ⟨⟩ ⟨⟩ ⊥
⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨a⟩ ⟨a⟩ ⊥ ⊔ a

⟨⊥⟩ ⟨⊥⟩ ⟨b, a⟩ ⟨ab, a⟩ ⊥ ⊔ ab

⟨⟩ ⟨⟩ ⟨c, b, a⟩ ⟨abc, ab, a⟩ ⊥ ⊔ abc

⟨b, c⟩ ⟨bc, c⟩ ⟨d⟩ ⟨d⟩ bc ⊔ d

⟨c⟩ ⟨c⟩ ⟨e, d⟩ ⟨de, d⟩ c ⊔ de

Fig. 9. A run of mWinFold while maintaining a queue of 3 elements. The elements
a, b, c, d, e are fed in, incrementally. The binary operation ⊔ has been omitted in this
figure except in a few places for the sake of brevity.

4 Extraction and Experiments

We use Coq’s extraction mechanism to produce OCaml code for our toMonitor
function. For this purpose, we instantiate the lattice V with the concrete OCaml
type float.

We extract monitors for formulas involving atomic functions (involving pro-
jection and subtraction emulating STL, as explained in Example 5), Boolean
operators and other temporal operators. As a measure of performance, we use
throughput, which is the number of items that can be processed in a fixed dura-
tion. Since Pa and P[0,a] are the main constructs used to express various other
ones, we measure their performance for varying values of a (see Figure 10).
We also measure the throughput for monitors corresponding to similar formulas
produced by Reelay [32].

We generate a trace consisting of three random floating point values in each
trace item. For the purpose of our tool, we perform experiments on traces of
length 20 million as well as 200 million. We observe that this difference on the
length of the trace has no significant effect on the throughput. It appears that
Reelay has a throughput which is slower by orders of magnitude. For this reason,
we perform our experiments on Reelay on smaller traces - of 500 thousand items.
The experiment corresponding to each formula was run 10 times and the reported
value is their mean. The standard deviation of the results were less than 3% in
all cases.

A potential explanation for the comparative worse performance of Reelay is
that Reelay stores data values in string-indexed maps. Interval Maps are also
used in Reelay’s implementation of operators such as P[a,b]. Since our tool does
not use any map-like data structure, we do not incur these costs.

In Figure 11, we use formulas similar to the ones used in the Timescales [31]
benchmark. The formulas used in the Timescales benchmark are in propositional
MTL, so we define the propositions p, q, r and s as x > 0.5, y > 0.25, z > 0.3
and z > 0.6 respectively, where x, y and z are projections of the current trace
item. For convenience, also define k and ℓ to be 1000 and 2000 respectively. The
formulas F1 through F10 in Figure 11, in order, are: H(P[0,k]q → (¬pSq)), H(r →
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Fig. 10. Throughput for formulas with large constants

P[0,k](¬p), H((r ∧ ¬q ∧ Pq) → (¬p S[k,ℓ] q)), H(P[0,k]q → (p S q)), H(r → H[0,k]p),
H((r∧¬q∧Pq) → (pS[k,ℓ]q)), HP[0,k]p, H((r∧¬q∧Pq) → (P[0,k](p∨q)Sq)), H((s→
Pk,ℓp)∧¬(¬s S[k,∞) p)), and H((r∧¬q ∧Pq) → ((s→ P[k,ℓ]p)∧¬(¬s S[k,∞) p))).
Implications α → β were encoded as ¬α ∨ β and negations were encoded using
their negation normal form.

All experiments were run on a computer with Intel Xeon CPUs 3.30GHz with
16 GB memory running Ubuntu 18.04.

5 Related Work

Fainekos and Pappas [18] introduce the notion of robustness for the interpre-
tation of temporal formulas over discrete and continuous time signals. In their
setting, signals are functions from a temporal domain to a metric space and the
distance function of the metric space is used to endow the space of signals with
a metric. The robustness is essentially the largest amount by which a signal can
be perturbed while still satisfying the specification. In the same paper, an alter-
nate quantitative semantics is proposed which is defined in an inductive fashion
by replacing disjunction with max and conjunction with min. This inductive
semantics can be used to under-approximate the robustness value. The frame-
work used in our paper essentially is this under-approximating semantics. This
approach is extended by Donzé and Maler [16] to include temporal robustness.

In [21], the authors describe a general algebraic framework for defining ro-
bustness based on the monoidal structure of traces using the semiring structure
on the semantic domain. They suggest the use of symbolic weighted automata for
the purpose of monitoring. With this approach, they are able to compute the pre-
cise robustness value for a property-signal pair. The construction of a weighted
automaton from a temporal formula incurs a doubly exponential blowup, if one
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Fig. 11. Throughput for formulas from the Timescales benchmark

assumes a succinct binary representation of the constants appearing in an MTL
formula. We consider here a class of lattices, which are also semirings. With
our approach, however, we do not calculate the precise robustness value, but an
under-approximation in the sense discussed in the previous paragraph. One may
also consider a semantics in which disjunction is replaced with + and conjunction
with × from the semiring. With our approach, we would not be able to monitor
formulas with this semantics since we make crucial use of the absorption laws in
Lemma 13. The most interesting semiring which does not form a lattice which
might be relevant in the monitoring of cyber-physical systems is (R,max,+).

The distance between two signals can be defined to be the maximum of the
distance between the values that the signals take at corresponding points of
time. However, other ways to define this distance have been considered. In [20],
a quantitative semantics is developed via the notion of weighted edit distance.
Averaging temporal operators are proposed in [2] with the goal of introducing
an explicit mechanism for temporal robustness. The Skorokhod metric [12] has
been suggested as a distance function between continuous signals. In [1], another
metric is considered, which compares the value taken by the signal within a
neighbourhood of the current time. Another interesting view of temporal logic
is in [29], where temporal connectives are viewed as linear time-invariant filters.

Signal Regular Expressions (SREs) [33] are another formalism for describing
patterns on signals. They are based on regular expressions, rather than LTL. A
robustness semantics for SRE has been proposed in [5] along with an algorithm
for offline monitoring. In [4], STL is enriched by considering a more general (and
quantitative) interpretation of the Until operator and adding specific aggregation
operators. They also give a semantics of their formalism using dual numbers,
which are the real numbers with an adjoined element ϵ satisfying ϵ2 = 0.
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In [24], a monitoring algorithm for STL is proposed and implemented in the
AMT tool. A later version, AMT 2.0 [28] extends the capabilities of AMT to
an extended version of STL along with Timed Regular Expressions. In [15], an
efficient algorithm for monitoring STL is discussed whose performance is linear
in the length of the input trace. This is achieved by using Lemire’s [23] sliding
window algorithm for computing the maximum. This is implemented as a part
the monitoring tool Breach [14]. A dynamic programming approach is used in
[13] to design an online monitoring algorithm. Here, the availability of a predictor
is assumed which predicts the future values, so that the future modalities may
be interpreted. A different approach towards online monitoring is taken in [17]:
they consider robustness intervals, that is, the tightest interval which covers
the robustness of all possible extensions of the available trace prefix. There are
also monitoring formalisms that are essentially domain-specific languages for
processing data streams, such as LOLA [11] and StreamQRE [26]. LOLA has
recently been used as a basis for RtLOLA in the StreamLAB framework [19],
which adds support for sliding windows and variable-rate streams. A detailed
survey on the many extensions to the syntax and semantics of STL along with
their monitoring algorithms and applications is presented in [6].

In [10], a framework towards the formalization of runtime verification com-
ponents are discussed. MonPoly [9] is a tool developed by Basin et al. aimed
at monitoring a first order extension of temporal logic. In [30], the authors put
forward Verimon, a simplified version of MonPoly which uses the proof assistant
Isabelle/HOL to formally prove its correctness. They extend this line of work
in Verimon+ [7] which verifies a more efficient version of the monitoring algo-
rithms and uses a dynamic logic, which is an extension of the temporal logic
with regular expression-like constructs.

6 Conclusion

We have presented a formalization in the Coq proof assistant of a procedure
for constructing online monitors for metric temporal logic with a quantitative
semantics. We have extracted verified OCaml code from the Coq formalization.
Our experiments show that our formally verified online monitors perform well
in comparison to Reelay [32], a state-of-the-art monitoring tool.

The construction of monitors that we presented can be extended and made
more compositional by using classes of transducers that can support dataflow
combinators [22] (serial, parallel and feedback composition), as seen in [25, 27].
We leave an exploration of this direction as future work. It is also worth devel-
oping a more thorough benchmark suite to compare the presented monitoring
framework against the tools Breach [14], S-TaLiRo [3], and StreamLAB [19]. We
have extracted OCaml code from a Coq formalization, but a formally verified
C implementation would be preferable from a performance standpoint. Another
interesting direction is to increase the expressiveness of our specification formal-
ism: one possible candidate is the extension to dynamic logic, as has been done
in [7] in a qualitative setting.
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