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Abstract. We investigate the formalization, using the Coq proof assis-
tant, of a procedure for constructing online monitors from specifications
written in past-time metric temporal logic (MTL). We employ an alge-
braic quantitative semantics that encompasses the Boolean and robust-
ness semantics of MTL and we interpret formulas over a discrete tem-
poral domain. A potentially infinite-state variant of Mealy machines, a
kind of string transducers, is used as a formal model of online monitors.
The main result is that there is a compositional construction from for-
mulas to monitors, so that each monitor computes (in an online fashion)
the semantic values of the corresponding formula over the input stream.
From our Coq formalization, we extract OCaml code for executable on-
line monitors. We have compared the performance of our monitoring
framework with Reelay, a state-of-the-art tool for monitoring temporal
properties.

Keywords: Online Monitoring · Formal Verification · Quantitative
Semantics.

1 Introduction

Verifying cyber-physical systems statically is usually infeasible at large scales,
and may require making assumptions about the behavior of the environment.
In contrast, runtime verification is a lightweight technique for checking that a
system exhibits the desired behavior. It is often performed in an online fashion,
which means that the execution trace of the system is observed as it is being
generated. This trace typically consists of one or more signals and event streams.
A monitor program runs in parallel with the system, consumes the system trace
incrementally, and outputs at every step a value that summarizes the current
state of the system. This value can be a Boolean indication of whether an inter-
esting event or pattern has been identified, or it can contain richer quantitative
information. There is a substantial amount of existing work on formalisms for
specifying monitors, as well as on algorithms for their efficient execution.

Temporal patterns are often specified using logical formalisms. Linear Tem-
poral Logic (LTL) is one such widely utilized formalism which admits efficient
algorithms. It is common to constrain the occurrence of temporal patterns using
time intervals, which is a feature that gives rise to an extension of LTL called
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metric temporal logic (MTL) [40]. Since many applications in the domain of
cyber-physical systems frequently deal with comparison between numerical sig-
nals, Signal Temporal Logic (STL) [42], an extension of LTL with predicates
allowing comparison with numerical values, is widely used.

While temporal logic facilitates the specification of temporal properties, it is
equally important to have accompanying algorithms. The notion of a monitor is
an algorithm which analyzes given traces for a specific temporal property. In an
offline setting, the trace is available in its entirety. In contrast, online monitors
are meant to be attached to running systems, so that they may report interesting
(or critical) events as they happen, potentially so that a supervisor can act in
real time. Thus, they must analyze system traces incrementally (fragment by
fragment) as they evolve and this must be done efficiently: each update should
be handled quickly.

The standard semantics for temporal logic is qualitative, which means that
monitors classify traces only in a binary pass/fail manner. However, this is not
sufficiently informative for certain applications: some violations can be more
serious than others, and on the other hand, some cases of satisfaction could be
close to the edge of failure. In some cases, we may be able to take corrective action
if we could tell that the system is approaching a potential violation. Indeed, in
realistic systems with continuous dynamics, some degree of tolerance must be
allowed since every value is accurate only up to the extent of measurement errors.
This encourages us to consider quantitative semantics for our formalisms, so that
we can quantify how robustly the observed behavior fits the desired specification
[31].

The variant of MTL that we consider in this paper is interpreted over a
discrete temporal domain and is a past-time only fragment of the logic. In the
setting of online monitoring we need to reactively respond to the patterns in what
we have seen so far. So, using a past-time fragment makes sense and provides a
clean semantics. Online monitoring with future-time temporal connectives has
been considered, but these can give rise to semantic complications [29].

Using the interactive theorem prover Coq [56], we formalize the semantics of
our temporal logic. The implementation of our monitoring algorithms are done
within Coq, and a proof of correctness is given. Formal proofs, like the ones
described in Coq, are thoroughly rigorous and machine checkable. This gives
us confidence in the correctness of our implementations. With the extraction
mechanism of Coq, we can obtain executable OCaml code directly from our
verified implementation.

It would be difficult to deploy an OCaml-based implementation on an em-
bedded device in a cyber-physical system due to scarcity of runtime resources.
However, our verified monitor could be used as a part of the development-level
environment for such systems. An example of such an activity is the use of run-
time monitoring for the purpose of falsification (see [30]). Our verified online
monitor could also be used in any scenario where offline monitoring can be used.
Another utility of our monitor is that it could be used as an oracle for differen-
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tially testing the correctness of other monitors. We demonstrate this possibility
in our paper by finding some bugs in the Reelay monitoring tool.

As mentioned earlier, a strong motivation for using a quantitative seman-
tics is to quantify how robustly a signal satisfies a given specification in view of
potential perturbations. One way to do so for STL specifications is to interpret
formulas over real numbers and interpret the logical connectives ∨ and ∧ as max
and min respectively [27]. In our work, we use a slightly more general framework,
interpreting our formulas over arbitrary bounded distributive lattices. This ab-
stract algebraic framework enables a simpler verification approach and, as we
will discuss later, does not hurt the performance of our algorithms.

In our formalization, we model online monitors as a potentially infinite-state
variant of Mealy machines. They are abstract machines whose state evolves as
fragments of a trace are consumed. Each state of the machine is associated
with a value that represents the current output of the monitor. We follow a
compositional approach for our implementation and proofs. This is done with
the help of combinators, which are constructs that compose Mealy machines in
different ways (possibly with other data structures) so that their behaviors can be
composed or combined. Corresponding to each Boolean or temporal connective
in our specification language, we identify a combinator on Mealy machines which
implements the desired behavior.

We observe that formulas in our temporal logic can be rewritten so that
only a few combinators are necessary: (1) combinators which combine the out-
put of Mealy machines running in parallel by applying a binary operation on
their respective outputs, (2) combinators which compute a running aggregate
on the results of a Mealy machine, (3) combinators which compute running ag-
gregates over sliding windows, and (4) combinators which withhold the results
of a machine until a given number of updates. We will see that most of these
can be implemented in a straightforward way. Applying a binary operation to
the current output values of two running machines can be done with a stateless
construction. Computing running aggregates efficiently can be achieved by stor-
ing the aggregate of the trace seen so far. In order to withhold the results of a
given machine, we can simply store them in a queue of a fixed length. Comput-
ing aggregates over sliding windows is slightly trickier. This is usually achieved
with an algorithm that maintains monotonic wedges [41]. However, this assumes
that the semantic values are totally ordered, which is not necessarily true in
our setting of lattices. Instead, we use an algorithm that is inspired from the
well-known implementation of a queue data structure using two stacks, popular
in functional programming. A variant of this algorithm can be used for comput-
ing sliding-window aggregates for any associative operation in a way that every
execution step of the monitor needs 𝑂(1) amortized time.

Our Coq formalization and extracted code are available in a public GitHub
Repository1.

1 https://github.com/Agnishom/lattice-mtl

https://github.com/Agnishom/lattice-mtl
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Outline of the paper. In Sect. 2, we first introduce lattices and then present the
syntax and semantics of our temporal specification language. In Sect. 3, we give
a formal definition of Mealy machines, present a collection of Mealy combinators,
and discuss in detail their implementation. In Sect. 4, we discuss the extraction
of executable OCaml code from the Coq scripts, use it as a verification oracle and
we compare its performance against the monitoring tool Reelay [59]. Finally, in
Sect. 5, we discuss several different quantitative semantics for Signal Temporal
Logic, various algorithmic approaches to online monitoring, and we also give a
brief overview of related efforts to produce formally verified monitors.

2 Metric Temporal Logic

In this section, we review metric temporal logic (MTL), which will be the formal-
ism that we consider here for specifying quantitative properties. We use bounded
distributive lattices as semantic value domains for our logic. While this abstract
algebraic setting is not usually how MTL is interpreted, we will see that the
standard qualitative (Boolean) and quantitative (robustness) semantics can be
obtained simply by choosing the appropriate lattice.

2.1 Lattices

A lattice is a partial order in which every two elements have a least upper bound
and a greatest lower bound. We will use an equivalent algebraic definition.

Definition 1. A lattice is a set 𝐴 together with associative and commutative
binary operations ⊓ and ⊔, called meet and join respectively, that satisfy the
absorption laws, i.e, 𝑥 ⊔ (𝑥 ⊓ 𝑦) = 𝑥 and 𝑥 ⊓ (𝑥 ⊔ 𝑦) = 𝑥 for all 𝑥, 𝑦 ∈ 𝐴.

Let 𝐴 be a lattice. Using the absorption laws it can be shown that ⊔ is
idempotent: 𝑥 ⊔ 𝑥 = 𝑥 ⊔ (𝑥 ⊓ (𝑥 ⊔ 𝑥)) = 𝑥 for every 𝑥 ∈ 𝐴. Similarly, it can
also be shown that ⊓ is idempotent. Define the relation ⊑ as follows: 𝑥 ⊑ 𝑦 iff
𝑥 ⊔ 𝑦 = 𝑦 for all 𝑥, 𝑦 ∈ 𝐴. The relation ⊑ is a partial order. It also holds that
𝑥 ⊑ 𝑦 iff 𝑥 ⊓ 𝑦 = 𝑥. For all 𝑥, 𝑦 ∈ 𝐴, the element 𝑥 ⊔ 𝑦 is the supremum (least
upper bound) of {𝑥, 𝑦} and the element 𝑥 ⊓ 𝑦 is the infimum (greatest lower
bound) of {𝑥, 𝑦} w.r.t. the order ⊑.

Definition 2. A lattice 𝐴 is said to be bounded if there exists a top element
⊤ ∈ 𝐴 and a bottom element ⊥ ∈ 𝐴 such that ⊥ ⊔ 𝑥 = 𝑥 and 𝑥 ⊓ ⊤ = 𝑥
(equivalently, ⊥ ⊑ 𝑥 ⊑ ⊤) for every 𝑥 ∈ 𝐴.

Let 𝐴 be a bounded lattice. It is easy to check that 𝑥⊔⊤ = ⊤ and ⊥⊓𝑥 = ⊥
for every 𝑥 ∈ 𝐴. For a finite subset 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛} of a bounded lattice, we
write ⨆ 𝑋 for 𝑥1 ⊔ 𝑥2 ⊔ ⋯ ⊔ 𝑥𝑛 and similarly ⨅ 𝑋 for 𝑥1 ⊓ 𝑥2 ⊓ ⋯ ⊓ 𝑥𝑛. Moreover,
we define ⨆ ∅ to be ⊥ and ⨅ ∅ to be ⊤. So, ⨆ 𝑋 is the supremum of 𝑋 and ⨅ 𝑋
is the infimum of 𝑋.
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Definition 3. A lattice 𝐴 is said to be distributive if 𝑥⊓(𝑦⊔𝑧) = (𝑥⊓𝑦)⊔(𝑥⊓𝑧)
and 𝑥 ⊔ (𝑦 ⊓ 𝑧) = (𝑥 ⊔ 𝑦) ⊓ (𝑥 ⊔ 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝐴.

Example 4. Consider the two-element set 𝔹 = {⊤, ⊥} of Boolean values, where
⊤ represents truth and ⊥ represents falsity. The set 𝔹, together with conjunction
as meet and disjunction as join, is a bounded and distributive lattice.

Example 5. The set ℝ of real numbers, together with min as meet and max as
join, is a distributive lattice. However, (ℝ, min, max) is not a bounded lattice. It
is commonplace to adjoin the elements ∞ and −∞ to ℝ so that they serve as
the top and bottom element respectively.

2.2 Syntax and Semantics
We fix a set 𝔻 of data items. We denote by 𝔻𝜔 the set of infinite sequences over
𝔻, which can also be thought of as functions of type ℕ → 𝔻. We call members
of 𝔻𝜔 traces. We also consider non-empty strings over 𝔻, denoted 𝔻+, which
we call (trace-)prefixes. Given a trace 𝜎, we use 𝜎|𝑛 to denote the finite string
𝜎(0)𝜎(1) ⋯ 𝜎(𝑛).

We also fix a bounded distributive lattice 𝕍, whose elements are quantitative
truth values that represent degrees of truth or falsity. Given a formula, our
quantitative semantics will associate a truth value (from 𝕍) with each position
of the trace. The set Φ of temporal formulas that we consider is given by the
following grammar:

𝜑, 𝜓 ∶∶= 𝑓 ∶ 𝔻 → 𝕍 ∣ 𝜑 ∨ 𝜓 ∣ 𝜑 ∧ 𝜓 ∣ P𝐼𝜑 ∣ H𝐼𝜑 ∣ 𝜑 S𝐼 𝜓 ∣ 𝜑 S𝐼 𝜓,
where 𝐼 is an interval of the form [𝑎, 𝑏] or [𝑎, ∞) with 𝑎, 𝑏 ∈ ℕ. For every temporal
connective 𝑋 ∈ {P, H, S, S}, we will write 𝑋𝑎 as an abbreviation for 𝑋[𝑎,𝑎] and
𝑋 as an abbreviation for 𝑋[0,∞). We interpret formulas from Φ over traces 𝔻𝜔 at
specific positions using the robustness interpretation function 𝜌 ∶ Φ×𝔻𝜔×ℕ → 𝕍,
defined as follows:

𝜌(𝑓, 𝜎, 𝑖) = 𝑓(𝜎(𝑖))
𝜌(𝜑 ∨ 𝜓, 𝑤, 𝑖) = 𝜌(𝜑, 𝜎, 𝑖) ⊔ 𝜌(𝜓, 𝜎, 𝑖)
𝜌(𝜑 ∧ 𝜓, 𝜎, 𝑖) = 𝜌(𝜑, 𝜎, 𝑖) ⊓ 𝜌(𝜓, 𝜎, 𝑖)

𝜌(P𝐼𝜑, 𝜎, 𝑖) = ⨆
𝑗∈𝐼

𝑖−𝑗≥0

𝜌(𝜑, 𝜎, 𝑖 − 𝑗)

𝜌(H𝐼𝜑, 𝜎, 𝑖) = ⨅
𝑗∈𝐼

𝑖−𝑗≥0

𝜌(𝜑, 𝜎, 𝑖 − 𝑗)

𝜌(𝜑 S𝐼 𝜓, 𝜎, 𝑖) = ⨆
𝑗∈𝐼

𝑖−𝑗≥0

(𝜌(𝜓, 𝜎, 𝑖 − 𝑗) ⊓ ⨅
𝑘<𝑗

𝜌(𝜑, 𝜎, 𝑗 − 𝑘))

𝜌(𝜑 S𝐼 𝜓, 𝜎, 𝑖) = ⨅
𝑗∈𝐼

𝑖−𝑗≥0

(𝜌(𝜓, 𝜎, 𝑖 − 𝑗) ⊔ ⨆
𝑘<𝑗

𝜌(𝜑, 𝜎, 𝑗 − 𝑘))
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Note that 𝜌(P𝑎𝜑, 𝜎, 𝑖) = ⊥ and 𝜌(H𝑎𝜑, 𝜎, 𝑖) = ⊤ whenever 𝑎 > 𝑖. The semantics
of ∧, H and S can be obtained from that of ∨, P and S by switching the roles of
⊓ and ⊔. Thus, they will be referred to as dual operators.

Since we are interpreting formulas over discrete traces, our logic is expres-
sively equivalent to LTL with a “Previous” operator. In other words, temporal
connectives (including S and S; see Lemma 14) with bounded intervals can be
rewritten in terms of multiple compositions of the Previous operator instead.
Also, note that our temporal logic does not include negation. However, this does
not limit expressiveness as we discuss in the examples below.

Example 6. Continuing from Example 4, we choose 𝔻 to be 𝔹𝑘 and we set 𝕍 to
𝔹. The set of functions from 𝔹𝑘 → 𝔹 considered may be restricted to projections
𝜋𝑖(𝑏1, … 𝑏𝑖, … 𝑏𝑘) = 𝑏𝑖 and negated projections 𝜋𝑖(𝑏1, … 𝑏𝑖, … 𝑏𝑘) = 𝑏𝑖. This gives
us the standard qualitative semantics for metric temporal logic. Formulas with
negation can be expressed equivalently as formulas in negation normal form
(NNF) in a fairly standard way by pushing negation inside while interchanging
operators for their dual operators.

Example 7. We can also express a past-time version of STL interpreted over
discrete time in this framework. To do so, take 𝔻 = ℝ𝑘. A qualitative semantics is
obtained by taking 𝕍 to be 𝔹 and restricting the functions to comparisons of the
form (𝑟1, … , 𝑟𝑖, … , 𝑟𝑘) ↦ 𝑟𝑖 ∼ 𝑐 where 𝑐 ∈ ℝ and ∼ ∈ {≤, ≥, =}. A quantitative
semantics can be obtained by taking 𝕍 to be ℝ∪{∞, −∞} (as in Example 5) and
considering functions of the form (𝑟1, … , 𝑟𝑖, … , 𝑟𝑘) ↦ 𝑟𝑖 − 𝑐 or (𝑟1, … 𝑟𝑖 … 𝑟𝑘) ↦
𝑐 − 𝑟𝑖. Even in the quantitative setting, STL formulas with negation can be
presented in our framework by considering NNF, again by pushing negation
inside while interchanging operators for their dual operators and replacing 𝑟𝑖 −𝑐
with 𝑐 − 𝑟𝑖.

Our formalism is a past-time only logic. This means that the robustness value
at a point can be determined by the trace prefix up to that position. This idea
can be stated formally in the form of the following claim.

Lemma 8. Suppose 𝜎, 𝜏 are traces such that 𝜎|𝑛 = 𝜏|𝑛 for some 𝑛 ∈ ℕ. Then,
for any formula 𝜑 ∈ Φ and for every 𝑖 ≤ 𝑛, 𝜌(𝜑, 𝜎, 𝑖) = 𝜌(𝜑, 𝜏, 𝑖).

This suggests a way to interpret formulas on trace-prefixes. Suppose 𝑤 ∈ 𝔻+,
and 𝜎 ∈ 𝔻𝜔 is some trace such that 𝜎||𝑤| = 𝑤. Then, we define 𝜌(𝜑, 𝑤) =
𝜌(𝜑, 𝜎, |𝑤|). Lemma 8 implies that this definition does not depend on the specific
choice of 𝜎.

3 The Monitoring Problem

Monitoring is the processing of an input trace in order to detect specified pat-
terns. For quantitative properties, this could be thought of as applying a valua-
tion function on a trace. In an online setting, the trace is supplied to the monitor
incrementally. To elaborate, the monitor consumes fragments of the trace one
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at a time and the monitor is required to evaluate the quantitative property on
the trace prefix seen so far. Below, we outline a compositional approach for
monitoring quantitative properties denoted by MTL formulas.

3.1 Monitors as Mealy Machines

We will use a variant of Mealy machines, a class of string transducers, as a formal
model of online monitoring algorithms.

Definition 9. Let 𝐴 and 𝐵 be sets. A Mealy machine with input items from 𝐴
and output values in 𝐵 is a tuple (St, init, mNext, mOut) where St is a (possibly
infinite) set of states, init ∈ St is the initial state, mNext ∶ St × 𝐴 → St is a
transition function which transitions the state of the machine upon seeing an
input from 𝐴, and mOut ∶ St × 𝐴 → 𝐵 provides an output at the current state,
given an element from 𝐴. We write Mealy(𝐴, 𝐵) for the set of all Mealy machines
with inputs from 𝐴 and outputs from 𝐵.

While this is similar to the standard definition of Mealy Machines found in
the literature, we use an equivalent, co-inductive definition in our formalization.
In the co-inductive view (see [21]), the states are not explicitly expressed, but
described directly in terms of their extensional behavior.

CoInductive Mealy (A B : Type) : Type := {
mOut : A -> B;
mNext : A -> Mealy A B;

}.

The functions mNext and mOut denote the incremental update and output of
the machine, respectively, which consume traces element by element. We can
extend these functions to gNext and gOut to consume non-empty strings, more
generally. We can think of the function gOut as the quantitative property that
the machine associates with the given trace-prefix.

Definition 10. Let 𝑚 ∈ Mealy(𝐴, 𝐵). Then, gNext(𝑚) ∶ 𝐴∗ → Mealy(𝐴, 𝐵) is
defined by gNext(𝑚, 𝜀) = 𝑚 and gNext(𝑚, 𝑤 ⋅ 𝑎) = mNext(gNext(𝑚, 𝑤), 𝑎). We
define gOut(𝑚) ∶ 𝐴+ → 𝐵 by gOut(𝑚, 𝑤 ⋅ 𝑎) = mOut(gNext(𝑚, 𝑤), 𝑎).

For a quantitative property of trace-prefixes, i.e, a function 𝑓 ∶ 𝔻+ → 𝕍,
we wish to construct a Mealy machine that computes 𝑓 . In particular, we are
interested in quantitative properties which arise as denotations of MTL formulas.

Definition 11. Let 𝜑 ∈ Φ and 𝑚 ∈ Mealy(𝔻, 𝕍). We say that the Mealy ma-
chine 𝑚 implements a monitor for 𝜑 if gOut(𝑚, 𝑤) = 𝜌(𝜑, 𝑤) for all 𝑤 ∈ 𝔻+.

Example 12. Following Definition 9, consider the machine 𝑚 ∶ Mealy(𝕍, 𝕍)
with states 𝕍 (indicating that it stores one element of type 𝕍), initial state
⊥, mOut(𝑢, 𝑎) = 𝑢 and mNext(𝑢, 𝑎) = 𝑎. It holds that gOut(𝑚, 𝑣1) = ⊥ and
gOut(𝑚, 𝑣1𝑣2) = 𝑣1, gOut(𝑚, 𝑣1𝑣2𝑣3) = 𝑣2, etc. The machine 𝑚 implements a
monitor for the formula P1(𝑣 ↦ 𝑣) in the sense of Definition 11.
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Stated formally, the monitoring problem for MTL is to find a translation
toMonitor ∶ Φ → Mealy(𝔻, 𝕍) so that given any 𝜑 ∈ Φ, toMonitor(𝜑) imple-
ments a monitor for 𝜑.

3.2 Monitor Combinators

Combinators are compositional constructs that let one define new machines in
terms of existing ones. Our approach towards solving the monitoring problem
is to find combinators which correspond to the temporal and Boolean connec-
tives of MTL. With these combinators, a monitor for a given formula can be
specified by induction on the structure of the formula. A similar approach for
MTL with bounded future-time connectives is considered in [50,46]. The com-
positional construction of transducers, called temporal testers, for temporal for-
mulas has been studied in [53,44,34]. The use of combinators for specifying more
general computations for stream processing has been considered in the design
of the domain-specific languages StreamQRE [48] and StreamQL [39]. Quanti-
tative regular expressions (QREs) [7,48] (see also [8] and [11]) are particularly
relevant. QREs have been used to specify complex algorithms for medical mon-
itoring [1,3]. Moreover, the relationship between QREs and automata-theoretic
models with registers is investigated in [9,10,6].

Proceeding with the idea of compositional monitor construction, we identify
the key constructs which are necessary in achieving the expressive power of
MTL. We say that the formulas 𝜑 and 𝜓 are equivalent, and we write 𝜑 ≡ 𝜓, if
𝜌(𝜑, 𝜎, 𝑖) = 𝜌(𝜓, 𝜎, 𝑖) for all traces 𝜎 ∈ 𝔻𝜔 and positions 𝑖 ∈ ℕ.

Lemma 13. The following identities hold:

P[𝑎,𝑏]𝜑 ≡ P𝑎P[0,𝑏−𝑎]𝜑 (1)
H[𝑎,𝑏]𝜑 ≡ H𝑎H[0,𝑏−𝑎]𝜑 (2)

𝜑 S[𝑎+1,𝑏] 𝜓 ≡ H[0,𝑎]𝜑 ∧ P𝑎+1 (𝜑 S[0,𝑏−(𝑎+1)] 𝜓) (3)

𝜑 S[𝑎+1,𝑏] 𝜓 ≡ P[0,𝑎]𝜑 ∨ H𝑎+1 (𝜑 S[0,𝑏−(𝑎+1)] 𝜓) (4)
P[𝑎,∞)𝜑 ≡ P𝑎P[0,∞)𝜑 (5)
H[𝑎,∞)𝜑 ≡ H𝑎H[0,∞)𝜑 (6)

𝜑 S[𝑎+1,∞) 𝜓 ≡ H[0,𝑎]𝜑 ∧ P𝑎+1 (𝜑 S[0,∞) 𝜓) (7)

𝜑 S[𝑎+1,∞) 𝜓 ≡ P[0,𝑎]𝜑 ∨ H𝑎+1 (𝜑 S[0,∞) 𝜓) (8)

The proofs of the identities of Lemma 13 are straightforward. Proving the
identities involving S (or S) requires the distributivity axioms, which motivates
the need for considering distributive lattices.

Lemma 14. The following identities hold:

𝜑 S[0,𝑎] 𝜓 ≡ (𝜑 S 𝜓) ∧ P[0,𝑎]𝜓 (9)
𝜑 S[0,𝑎] 𝜓 ≡ (𝜑 S 𝜓) ∨ H[0,𝑎]𝜓 (10)
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Proof. We will only prove the first identity, since the second one can be proved
by dualizing the same argument. Let 𝜎 ∈ 𝔻𝜔 be an arbitrary trace and 𝑛 ∈ ℕ
a position. We define 𝑠𝑖 = 𝜌(𝜑, 𝜎, 𝑛 − 𝑖) and 𝑡𝑖 = 𝜌(𝜓, 𝜎, 𝑛 − 𝑖) for every 𝑖 ∈ ℕ.
Then, we have that

𝜌(𝜑 S[0,𝑎] 𝜓, 𝜎, 𝑛) = ⨆
𝑖≤𝐾

(𝑡𝑖 ⊓ ⨅
𝑗<𝑖

𝑠𝑗)

𝜌(𝜑 S 𝜓, 𝜎, 𝑛) = ⨆
𝑖≤𝑛

(𝑡𝑖 ⊓ ⨅
𝑗<𝑖

𝑠𝑗) = 𝜌(𝜑 S[0,𝑎] 𝜓, 𝜎, 𝑛) ⊔ ⨆
𝐾<𝑖≤𝑛

(𝑡𝑖 ⊓ ⨅
𝑗<𝑖

𝑠𝑗)

𝜌(P[0,𝑎]𝜓, 𝜎, 𝑛) = ⨆
𝑖≤𝐾

𝑡𝑖

where 𝐾 = min(𝑎, 𝑛). We have to prove that 𝐿 = 𝑅 ⊓ 𝑄, where 𝐿 = 𝜌(𝜑 S[0,𝑎]
𝜓, 𝜎, 𝑛), 𝑅 = 𝜌(𝜑 S 𝜓, 𝜎, 𝑛) and 𝑄 = 𝜌(P[0,𝑎]𝜓, 𝜎, 𝑛). From 𝐾 ≤ 𝑛 we obtain that
𝐿 ⊑ 𝑅. It also holds that 𝐿 ⊑ 𝑄 because 𝑡𝑖 ⊓ ⨅𝑗<𝑖 𝑠𝑗 ⊑ 𝑡𝑖 for every 𝑖 ≤ 𝐾. It
follows that 𝐿 ⊑ 𝑅 ⊓ 𝑄. It remains to show that 𝑅 ⊓ 𝑄 ⊑ 𝐿. Since

𝑅 ⊓ 𝑄 = (𝐿 ⊔ ⨆
𝐾<𝑖≤𝑛

(𝑡𝑖 ⊓ ⨅
𝑗<𝑖

𝑠𝑗)) ⊓ 𝑄

= (𝐿 ⊓ 𝑄) ⊔ ⨆
𝐾<𝑖≤𝑛

(𝑡𝑖 ⊓ ⨅
𝑗<𝑖

𝑠𝑗 ⊓ 𝑄)

= (𝐿 ⊓ 𝑄) ⊔ ⨆
𝐾<𝑖≤𝑛

⨆
𝑘≤𝐾

(𝑡𝑖 ⊓ 𝑡𝑘 ⊓ ⨅
𝑗<𝑖

𝑠𝑗),

it suffices to establish that 𝐿 ⊓ 𝑄 ⊑ 𝐿 (which is true) and 𝑡𝑖 ⊓ 𝑡𝑘 ⊓ ⨅𝑗<𝑖 𝑠𝑗 ⊑ 𝐿
for every 𝑖 and 𝑘 with 𝐾 < 𝑖 ≤ 𝑛 and 𝑘 ≤ 𝐾. Since 𝑘 < 𝑖, we conclude that
𝑡𝑖 ⊓ 𝑡𝑘 ⊓ ⨅𝑗<𝑖 𝑠𝑗 ⊑ 𝑡𝑘 ⊓ ⨅𝑗<𝑘 𝑠𝑗 ⊑ 𝐿. ⊓⊔

Remark 15. In the qualitative setting, the identities of Lemma 14 are intu-
itively clear, but they require a more careful argument in the quantitative set-
ting. They have been used and proven in [26] for the lattice (ℝ, min, max), but
the given proof does not generalize to the class of lattices that we consider here.
As we can see in the proof of Lemma 14, there is a subtlety in dealing with the
terms of 𝜌(𝜑 S 𝜓, 𝜎, 𝑛) with index 𝑖 = 𝐾 + 1, … , 𝑛.

The first set of identities allows us to express P[•,•], S[•,•] in terms of P[0,•],
S[0,•] and P•. The second set of identities implies that S[0,•] can be replaced by S
and P•. Thus, the only additional constructs required in expressing the bounded
temporal operators are P• and P[0,•] (and their duals).

We present in Figure 1 a summary of the combinators that we will consider.
Each combinator can be thought of as the implementation of the corresponding
Boolean or temporal connective. The key observation is that this association
between combinators on Mealy machines and connectives respect the implemen-
tation relation (Definition 11) between machines and formulas. E.g., if 𝑚 is a
monitor for 𝜑, we expect mSometimeBounded 𝑘 𝑚 to be a monitor for P[0,𝑘]𝜑.
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𝑓 ∶ 𝔻 → 𝕍
mAtomic 𝑓 ∶ Mealy(𝔻, 𝕍)

𝑚 ∶ Mealy(𝔻, 𝕍) 𝑘 ∶ ℕ
mDelay 𝑘 𝑚 ∶ Mealy(𝔻, 𝕍)

𝑚 ∶ Mealy(𝔻, 𝕍) 𝑘 ∶ ℕ
mDelay 𝑘 𝑚 ∶ Mealy(𝔻, 𝕍)

𝑚1 ∶ Mealy(𝔻, 𝕍) 𝑚2 ∶ Mealy(𝔻, 𝕍)
mAnd 𝑚1 𝑚2 ∶ Mealy(𝔻, 𝕍)

𝑚1 ∶ Mealy(𝔻, 𝕍) 𝑚2 ∶ Mealy(𝔻, 𝕍)
mOr 𝑚1 𝑚2 ∶ Mealy(𝔻, 𝕍)

𝑚1 ∶ Mealy(𝔻, 𝕍) 𝑚2 ∶ Mealy(𝔻, 𝕍)
mSince 𝑚1 𝑚2 ∶ Mealy(𝔻, 𝕍)

𝑚1 ∶ Mealy(𝔻, 𝕍) 𝑚2 ∶ Mealy(𝔻, 𝕍)
mSince 𝑚1 𝑚2 ∶ Mealy(𝔻, 𝕍)

𝑚 ∶ Mealy(𝔻, 𝕍)
mSometime 𝑚 ∶ Mealy(𝔻, 𝕍)

𝑚 ∶ Mealy(𝔻, 𝕍)
mAlways 𝑚 ∶ Mealy(𝔻, 𝕍)

𝑚 ∶ Mealy(𝔻, 𝕍) 𝑘 ∶ ℕ
mSometimeBounded 𝑘 𝑚 ∶ Mealy(𝔻, 𝕍)

𝑚 ∶ Mealy(𝔻, 𝕍) 𝑘 ∶ ℕ
mAlwaysBounded 𝑘 𝑚 ∶ Mealy(𝔻, 𝕍)

Fig. 1. Summary of Mealy Combinators

[𝑓] = mAtomic 𝑓

[𝜑 ∧ 𝜓] = mAnd [𝜑] [𝜓] [𝜑 ∨ 𝜓] = mOr [𝜑] [𝜓]
[P𝜑] = mSometime [𝜑] [H𝜑] = mAlways [𝜑]

[P[0,𝑎]𝜑] = mSometimeBounded 𝑎 [𝜑] [H[0,𝑎]𝜑] = mAlwaysBounded 𝑎 [𝜑]
[P𝑎𝜑] = mDelay 𝑎 [𝜑] [H𝑎𝜑] = mDelay 𝑎 [𝜑]

[𝜑 S 𝜓] = mSince [𝜑] [𝜓] [𝜑 S 𝜓] = mSince [𝜑] [𝜓]
[P[𝑎,∞)𝜑] = [P𝑎P[0,∞)𝜑] (𝑎 > 0) [H[𝑎,∞)𝜑] = [H𝑎H[0,∞)𝜑] (𝑎 > 0)

[P[𝑎,𝑏]𝜑] = [P𝑎P[0,𝑏−𝑎]𝜑] (𝑎 > 0, 𝑎 ≠ 𝑏) [H[𝑎,𝑏]𝜑] = [H𝑎H[0,𝑏−𝑎]𝜑] (𝑎 > 0, 𝑎 ≠ 𝑏)
[𝜑 S[𝑎+1,𝑏] 𝜓] = [H[0,𝑎]𝜑 ∧ P𝑎+1(𝜑 S[0,𝑏−(𝑎+1)] 𝜓)] [𝜑 S[𝑎+1,𝑏] 𝜓] = [P[0,𝑎]𝜑 ∨ H𝑎+1(𝜑 S[0,𝑏−(𝑎+1)] 𝜓)]

[𝜑 S[𝑎+1,∞) 𝜓] = [H[0,𝑎]𝜑 ∧ P𝑎+1(𝜑 S 𝜓)] [𝜑 S[𝑎+1,∞) 𝜓] = [P[0,𝑎]𝜑 ∨ H𝑎+1(𝜑 S 𝜓)]
[𝜑 S[0,𝑎] 𝜓] = [(𝜑 S 𝜓) ∧ P[0,𝑎]𝜓] [𝜑 S[0,𝑎] 𝜓] = [(𝜑 S 𝜓) ∨ H[0,𝑎]𝜓]

Fig. 2. The toMonitor function

The definition of the toMonitor function which constructs monitors from
formulas is shown in Figure 2. As discussed, it proceeds by rewriting the formula
into the desired form and then replacing each temporal or Boolean connective
with the corresponding combinator. The main correctness claim for the monitor
is stated as follows:

Theorem toMonitor_correctness:
forall 𝜑, implements (toMonitor 𝜑) 𝜑.

The proof of this theorem is done using induction on the structure of the
formula. Once the identities in Lemmas 13 and 14 are proven, this can be done
using the correctness properties of individual combinators.

Before we start describing each combinator in detail, we make some remarks
about the general organization of our implementation and formal proofs. There
is a lot of symmetry among these combinators that can be leveraged for econ-
omy of effort. An example is the presence of dual connectives. This is why in
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CoFixpoint mAtomic {A B : Type} (f : A -> B) : Mealy A B :=
{| mOut x := f x;

mNext _ := mAtomic f; |}.
Lemma mAtomic_state {A B : Type} (f : A -> B) (l : nonEmpty A) :
gNext (mAtomic f) l = mAtomic f.

Lemma mAtomic_result {A B : Type} (f : A -> B) (l : nonEmpty A) :
gOut (mAtomic f) l = f (latest l).

Lemma monAtomic_correctness :
forall f, implements (monAtomic f) (FAtomic f).

Fig. 3. Establishing correctness of mAtomic.

many cases we focus on presenting these combinators in a slightly general way
before instantiating them specifically to Mealy(𝔻, 𝕍). As discussed before, the
correctness for each combinator is phrased in terms of preserving the imple-
mentation relation – these theorems are indexed with the suffix correctness.
These theorems are proven via lemmas indexed with the suffix result which
characterize the most recent output of the Mealy machine at some point in the
computation. The proofs proceed by induction on the trace seen so far. They
require additional lemmas that establish invariants about the state of a Mealy
machine as it evolves during the computation. These latter lemmas are indicated
with the suffix state. These ideas are illustrated in the construction of mAtomic
in Figure 3.

Atomic Functions. In order to lift functions 𝑓 ∶ 𝐴 → 𝕍 to Mealy(𝐴, 𝕍), we
define the mAtomic combinator, as shown in Figure 3. Given a function 𝑓 ∶ 𝐴 →
𝕍, it defines a Mealy machine which applies 𝑓 to the latest input element. We
use the lemma mAtomic_state to describe the evolution of the machine when
an arbitrary stream prefix is fed. Using this, we also prove mAtomic_result,
which describes the final output of the machine after accepting an arbitrary
stream prefix. The lemma titled mAtomic_correctness establishes that mAtomic
correctly translates atomic functions to corresponding monitors.

Pointwise Binary Operations. In Figure 4, we define the combinator mBinOp
that combines the output of two given machines using a binary operation. By
plugging in ⊔ and ⊓ as op, we can use mBinOp to implement the ∨ and ∧
connectives, respectively. Like in the case of mAtomic, the correctness of this
combinator is proven by establishing appropriate lemmas which describe the
behavior of mBinOp with gNext and gOut. These let us prove, in particular, that
mAnd and mOr correctly implement formulas involving ∧ and ∨, respectively.

Delay Monitors. We view the implementation of P• and H• as a mecha-
nism that delays the output of a Mealy Machine. For instance, the sequence
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CoFixpoint mBinOp {A B C D : Type} (op : B -> C -> D)
(m : Mealy A B) (n : Mealy A C) : Mealy A D := {|
mOut (a : A) := op (mOut m a) (mOut n a);
mNext (a : A) := mBinOp op (mNext m a) (mNext n a);

|}.
Definition monAnd (m n : Mealy A Val) : Mealy A Val :=
mBinOp meet m n.

Lemma monAnd_correctness m1 m2 𝜑1 𝜑2 :
implements m1 𝜑1 -> implements m2 𝜑2
-> implements (monAnd m1 m2) (FAnd 𝜑1 𝜑2).

Definition monOr (m n : Mealy A Val) : Mealy A Val :=
mBinOp join m n.

Lemma monOr_correctness m1 m2 𝜑1 𝜑2 :
implements m1 𝜑1 -> implements m2 𝜑2
-> implements (monOr m1 m2) (FOr 𝜑1 𝜑2).

Fig. 4. The mBinOp combinator

Lemma delayWith_state (q : Queue) (m : Mealy A B) (l : nonEmpty A) :
forall initSeg, initSeg = (back q) ++ rev (front q)

-> forall k, k = length initSeg
-> forall stream, stream = (toList (gCollect m l)) ++ initSeg
-> forall lastSeg, lastSeg = firstn k stream
-> exists newFront newBack,

lastSeg = newBack ++ rev newFront
/\ length lastSeg = k
/\ gNext (delayWith q m) l

= delayWith (Build_Queue newFront newBack) (gNext m l).

Fig. 5. Delay monitors.

⟨𝜌(P2𝜑, 𝑎1𝑎2𝑎3), 𝜌(P2𝜑, 𝑎1𝑎2𝑎3𝑎4)⟩ is same as ⟨𝜌(𝜑, 𝑎1), 𝜌(𝜑, 𝑎1𝑎2)⟩. These oper-
ators preserve the order of the outputs, but delay them by a given constant.

This can be achieved using a queue maintained at a fixed length. For instance,
to implement P𝑎𝜑, we maintain a queue of length 𝑎. Upon being given an input
item 𝑎 ∈ 𝔻, we feed 𝑎 to toMonitor(𝜑), enqueue the result and then return
what we obtain by dequeuing. This works since the dequeued element was the
result of toMonitor(𝜑) 𝑎 turns ago. The queue needs to be initially filled with
𝑎 instances of ⊥ (or ⊤ in the case of H𝑎) since we have that 𝜌(P𝑎𝜑, 𝑤) = ⊥ (or
𝜌(H𝑎𝜑, 𝑤) = ⊤) when |𝑤| > 𝑎.

Since Coq is based on a functional programming environment, functional
lists are the ordered collections that are the easiest for us to reason about and
work with. Functional lists are typically implemented via linked lists, which
means that in order to access the 𝑘th element of the list, one would have to
traverse 𝑘 links and would spend 𝑂(𝑘) time. This makes appending to the end
of the list expensive. However, obtaining or adding elements at the head (the
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CoFixpoint mFold {A B : Type} (op : B -> B -> B)
(m : Mealy A B) (init : B) : Mealy A B := {|
mOut (a : A) := op init (mOut m a);
mNext (a : A) := mFold op (mNext m a) (op init (mOut m a)); |}.

Definition mSometime (m : Mealy A Val) : Mealy A Val :=
mFold join m bottom.

Definition monAlways (m : Mealy A Val) : Mealy A Val :=
mFold meet m top.

Fig. 6. Temporal Folds

beginning) of the list is straightforward. Thus, these lists effectively behave as
stacks and sometimes we refer to them as such. We use the well-known technique
of implementing a queue with two functional lists, which we briefly discuss below.

A queue is represented by two lists front and rear. When an element is
enqueued, it is added to the head of the rear list. Thus, the rear list effectively
stores the elements of the queue in an order opposite to that in which they
were enqueued. When dequeing an element is required, the elements of rear
are reversed and placed in the front (thus restoring the order) and the head of
front is returned. As long as front is non-empty, subsequent dequeues may be
directly handled by returning the head of front.

In our use case, the queue is maintained at a fixed length, say 𝑘, and every
enqueue is followed by a subsequent dequeue. Reversing rear into front takes
time 𝑂(𝑘). However, we only need to do this every 𝑘 turns, since front is filled
with 𝑘 items whenever the reversal happens. Thus, every 𝑘 turns, we do 𝑂(𝑘)
work and only 𝑂(1) work is needed otherwise. This gives us an amortized time
complexity of 𝑂(1).

We implement this idea in the delayWith combinator in Figure 5. The key
lemma required in proving the correctness of the delayWith combinator shows
that the queue maintained always stores the last 𝑘-many outputs of the sub-
monitor. To formalize this, we define gCollect ∶ Mealy(𝐴, 𝐵) × 𝔻+ → 𝕍+ as

gCollect(𝑚, 𝑎1𝑎2 ⋯ 𝑎𝑛) =
⟨gOut(𝑚, 𝑎1), gOut(𝑚, 𝑎2), ⋯ , gOut(𝑚, 𝑎1𝑎2 ⋯ 𝑎𝑛)⟩.

We may now write the mentioned invariant as in delayWith_state, which is
established by induction on the input stream.

Temporal Folds. The unbounded operators P and H can be thought of as a
running fold on the input stream, since 𝜌(P𝜑, 𝑤 ⋅ 𝑎) = 𝜌(P𝜑, 𝑤) ⊔ 𝜌(𝜑, 𝑤 ⋅ 𝑎) (and
similarly for H). Thus, to evaluate these operators in an online fashion, we only
need to store the robustness value for the trace seen so far. For P (resp., H),
the robustness of the current trace can then be obtained by computing the join
(resp., meet) of the current value and the stored one. In Figure 6, mAlways (resp.,
mSometime) computes the robustness values corresponding to the H (resp., P)
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CoFixpoint sinceAux (m1 m2 : Mealy A Val) (pre : Val) : Mealy A Val :=
{| mOut (a : A) := (mOut m2 a) ⊔ (pre ⊓ (mOut m1 a));

mNext (a : A) :=
sinceAux (mNext m1 a) (mNext m2 a)
((mOut m2 a) ⊔ (pre ⊓ (mOut m1 a)))

|}.

Definition monSince (m1 m2 : Mealy A Val) : Mealy A Val :=
sinceAux m1 m2 bottom.

Fig. 7. Monitoring Since

connectives by computing the meet (resp., join) of the current value with the
stored one. Their proof of correctness is a straightforward induction on the trace-
prefix, using the incremental equation involving the operator.

Using the following identity, we may also view the computation of S as a
temporal fold, i.e, the robustness for 𝜑 S 𝜓 may be calculated incrementally by
only storing the robustness value for the stream prefix so far.

Lemma 16. For all 𝑤 ∈ 𝔻+ and 𝑎 ∈ 𝔻, we have that

𝜌(𝜑 S 𝜓, 𝑤 ⋅ 𝑎) = 𝜌(𝜓, 𝑤 ⋅ 𝑎) ⊔ (𝜌(𝜑 S 𝜓, 𝑤) ⊓ 𝜌(𝜑, 𝑤 ⋅ 𝑎)).

This is a well known equality and can be proved by using distributivity in a
straightforward way. A proof of this for the (ℝ, max, min) lattice appears in [24].

Using the equality of Lemma 16, mSince can be implemented as in Figure
7. The correctness of mSince is established by proving invariants on mSinceAux,
which is straightforward once the equality above has been established.

Windowed Temporal Folds. For the operators P[0,𝑎] or H[0,𝑎], the strategy
above needs to be modified, since the fold is over a sliding window, rather than
the entire trace. For this purpose, we use a queue like data structure (dubbed
aggQueue, henceforth) which also maintains sliding window aggregates, in addi-
tion. An extended discussion of a similar data structure can be found in [18].

While we intend to use aggQueue specifically for computing sliding window
join and meet on bounded lattices, the algorirthmic idea behind the data struc-
ture only uses two ideas involving ⊔ (resp., ⊓). Namely: (1) ⊔ (resp., ⊓) is
associative (2) ⊥ (resp., ⊤) are identities for ⊔ (resp., ⊓). These features make
the lattice elements a monoid under ⊔ (resp., ⊓). in the remainder of this section,
we will describe the algorithm for a monoid (B, ⋅, 𝟙).

As the name suggests, we can think of aggQueue as a data structure with
a queue-like interface: it supports operations aggEnqueue ∶ aggQueue × B →
aggQueue and aggDequeue ∶ aggQueue → aggQueue which allow enqueuing el-
ements of B or dequeueing them. However, instead of a peek operation, we are
interested in an aggregate operation agg ∶ aggQueue → B which reports the
aggregate of all the elements in the queue.
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Definition aggQueue_inv (l : list B) (q : aggQueue) :=
exists olds news,

olds ++ news = l
/\ new q = rev news
/\ newAgg q = finite_op _ (rev (new q))
/\ length (oldAggs q) = length olds
/\ forall i , nth i (oldAggs q) unit = finite_op _ (skipn i olds).

Definition agg_inv (l : list B) (q : aggQueue) :=
agg q = finite_op _ l.

Lemma aggQueue_agg_inv l q :
aggQueue_inv l q -> agg_inv l q.

Lemma enqueue_aggQueue_inv l q :
aggQueue_inv l q
-> forall n, aggQueue_inv (l ++ [n]) (aggEnqueue n q).

Lemma aggDequeue_aggQueue_inv x xs q :
aggQueue_inv (x :: xs) q
-> aggQueue_inv xs (aggDequeue q).

Fig. 8. Invariants for aggQueue

To implement an usual queue, we maintained two lists: a rear list into which
the new elements are enqueued, and a front list from which elements can be de-
queued. Here, since we are interested in only knowing the aggregates, we replace
the front list with an oldAggs list, which stores partial aggregates instead. Ad-
ditionally, we keep track of newAgg, the aggregate of the values in new. Suppose
that the contents of the represented queue are a list l. Then, the invariant we
want to maintain suggests that l can be broken into two parts olds and news
such that (1) new contains the elements of news in reverse order (2) newAgg is
the aggregate of the elements of news (3) oldAggs has the same length as that of
olds (4) The 𝑖-th element of oldAggs is the aggregate of the |olds| − 𝑖 elements
of olds. Given these invariants, it is easy to see that the aggregate of the entire
queue can be computed as the aggregate of newAgg and the head of oldAggs.

We maintain these invariants in the following way: Upon enqueuing 𝑏 ∈ B,
we simply add 𝑏 to the head of new and update newAgg to newAgg ⋅ 𝑏. Performing
a dequeue is easy when oldAggs is non-empty: we simply remove the element at
its head. When oldAggs is empty, the contents of new are added as incremen-
tal partial aggregates to oldAggs. In Figure 8, we show a formalization of the
invariants that one needs to prove.

To keep a sliding window aggregate of the last 𝑘 elements, mSometimeBounded
(or mAlwaysBounded) initializes an aggQueue filled with 𝑘 instances of 𝟙 (i.e, ⊥
(or ⊤)). When a new input is available, the monitor enqueues the result of
the corresponding submonitor into queue and dequeues the element which was
enqueued 𝑘 turns ago. The output of the machine is simply the aggregate of



16 A. Chattopadhyay and K. Mamouras

l new oldAggs newAgg agg
⟨𝟙, 𝟙, 𝟙|⟩ ⟨⟩ ⟨𝟙, 𝟙, 𝟙⟩ 𝟙 𝟙
⟨𝟙, 𝟙|𝑎⟩ ⟨𝑎⟩ ⟨𝟙, 𝟙⟩ 𝑎 𝟙 ⋅ 𝑎
⟨𝟙|𝑎, 𝑏⟩ ⟨𝑏, 𝑎⟩ ⟨𝟙⟩ 𝑎𝑏 𝟙 ⋅ 𝑎𝑏
⟨|𝑎, 𝑏, 𝑐⟩ ⟨𝑐, 𝑏, 𝑎⟩ ⟨⟩ 𝑎𝑏𝑐 𝟙 ⋅ 𝑎𝑏𝑐
⟨𝑏, 𝑐|𝑑⟩ ⟨𝑑⟩ ⟨𝑏𝑐, 𝑐⟩ 𝑑 𝑏𝑐 ⋅ 𝑑
⟨𝑐|𝑑, 𝑒⟩ ⟨𝑒, 𝑑⟩ ⟨𝑐⟩ 𝑑𝑒 𝑐 ⋅ 𝑑𝑒

Fig. 9. A run of the sliding window algorithm that aggregates the last 3 elements. The
elements 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are fed in, incrementally. We use | as a seperator in l to indicate
the old and the new parts of the queue. Note that the contents of l itself is not stored.

the elements in the queue. Using a similar argument as before, we can see that
the invocations of mNext on these machines run in 𝑂(1) amortized time (with a
worst case behaviour of 𝑂(𝑘) which is invoked every 𝑘 turns). See Figure 9 for
an illustration of the execution of such a machine.

The correctness of the algorithm can be established via mWinFold_state. In
essence, it states that the contentsff and contentsrr together store the last
𝑘 elements of the stream, and that the invariants on aggsff and aggsrr are
maintained.

Theorem 17. Assume that elements of 𝕍 can be stored in constant space and
the lattice operations on 𝕍 can be computed in constant time and space. Further,
let 𝜑 ∈ Φ be a formula which only uses atomic functions which can be computed
in constant time and space. Then, toMonitor(𝜑) is a Mealy machine whose state
can be stored in 𝑂(2|𝜑|) space and the transition (resp., output) functions mNext
(resp., mOut) can be computed in amortized 𝑂(|𝜑|) time per item.

Note: The exponential in the formula stems from the fact that the constants in
the formula are encoded in binary. Note that this is unavoidable since computing
the value of P𝑎𝑝 would require storing the last 𝑎 values of 𝑝.
Proof (Theorem 17). This claim can be established via a straightforward induc-
tion on the structure of the formula 𝜑. At each step in the induction, we need
to show a constant space and amortized time overhead is created.

If 𝜑 is an atomic predicate, then computing 𝜑 can be done in constant time
by assumption and it requires no additional state.

If 𝜑 = 𝛼•𝛽 for • ∈ {∧, ∨}, then we may assume by induction that toMonitor(𝛼)
(resp., toMonitor(𝛽)) use 𝑂(2|𝛼|) (resp., 𝑂(2|𝛽|)) space and amortized 𝑂(|𝛼|)
(resp., 𝑂(2|𝛽|)) time. The machine toMonitor(𝛼 ∗ 𝛽) uses the states of both
toMonitor(𝛼) and toMonitor(𝛽) and can be stored in 𝑂(2|𝛼| + 2|𝛽|) = 𝑂(2|𝜑|)
space. By assumption, the additional time required to compute the lattice oper-
ation to combine the outputs of toMonitor(𝛼) and toMonitor(𝛽) is 𝑂(1). So,
this takes 𝑂(|𝛼|) + 𝑂(|𝛽|) + 𝑂(1) = 𝑂(|𝜑|) amortized time.

If 𝜑 = 𝑋[0,∞)𝛼 for 𝑋 ∈ {P, H} or 𝛼𝑆[0,∞)𝛽, then the analysis is similar. In
this case, the additional state we need to store is an element of 𝕍, which we can
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type ('v, 'a) formula =
| FAtomic of ('a -> 'v)
| FAnd of ('v, 'a) formula * ('v, 'a) formula
| FOr of ('v, 'a) formula * ('v, 'a) formula
| FSometime of int * int * ('v, 'a) formula
| FAlways of int * int * ('v, 'a) formula
| FSometimeUnbounded of int * ('v, 'a) formula
| FAlwaysUnbounded of int * ('v, 'a) formula
| FSince of int * int * ('v, 'a) formula * ('v, 'a) formula
| FSinceDual of int * int * ('v, 'a) formula * ('v, 'a) formula
| FSinceUnbounded of int * ('v, 'a) formula * ('v, 'a) formula
| FSinceDualUnbounded of int * ('v, 'a) formula * ('v, 'a) formula

type 'a lattice = { join : ('a -> 'a -> 'a); meet : ('a -> 'a -> 'a) }
type 'a boundedLattice = { bottom : 'a; top : 'a }

val toMonitor :
'a1 lattice -> 'a1 boundedLattice
-> ('a1, 'a2) formula -> ('a1, 'a2) monitor

Fig. 10. Extracted OCaml Code

store in 𝑂(1) space. The additional time required is just a constant number of
lattice operations, which can be done in 𝑂(1) time. Thus, the inductive invariant
is preserved in this case.

If 𝜑 = 𝑋𝑎𝛼 or 𝑋[0,𝑎]𝛼 for 𝑋 ∈ {P, H}, then it is handled using a delay buffer
or a sliding window aggregator as discussed. In both of these cases, a buffer of
length 𝑂(𝑎) (i.e, 𝑂(2|𝑎|)) is used. These queue mechanisms, as discussed above,
are used in an “enqueue followed by dequeue” manner. The dequeue operations
generally take 𝑂(1) time but every 𝑎 inputs involve reversal of the buffer which
takes 𝑂(𝑎) time. This amounts to an amortized time of 𝑂(1) per item.

4 Extraction and Experiments

We use Coq’s extraction mechanism to produce OCaml code for our toMonitor
function. This gives us a OCaml library the interface of which we show in Fig-
ure 10. The extracted toMonitor function can be instantiated with arbitrary
bounded distributive lattices by specifying the operations ⊓ and ⊔ and the cor-
responding identities ⊤ and ⊥.

For our experiments, we Following Example 5, we wish to emulate STL and
use the lattice (ℝ ∪ {±∞}, max, min). To do this, we model ℝ with the concrete
OCaml type float, which are 64-bit floating-point numbers. We also use ℝ
(modelled by float) for the set of data items 𝔻. We compare the performance
of our monitor with Reelay [59] (a C++ library) and the implementation for
semiring-based monitoring algorithms in Rust from [46].
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We have observed that the rate at which these tools process items roughly
approaches a constant rate. Most notably, there are periodic spikes of latency
that can be observed in our monitor, which correspond to the reversal of the
lists in our queue based algorithms. A similar behavior is seen in the semiring-
monitor, but this is harder to observe since the Rust implementation is very
fast. We summarize performance using the amortized (i.e., average) time taken
to process an item. To microbenchmark the building blocks of our algorithm,
we consider formulas 𝑋[0,𝑛], 𝑋𝑛, 𝑋[𝑛,2𝑛], 𝑋[𝑛,∞) where 𝑋 ∈ {S, P} and plot
their performance with respect to 𝑛 in Fig. 11. We notice that for Reelay, the
performance depends on the type of input stream provided; so, we report our
findings for stream whose elements are random, a stream whose elements form an
increasing sequence and another which forms a decreasing sequence. In our tool
and the semiring-monitor, the performance of the monitor seems to be roughly
independent of the stream. Beyond certain values of the constants, some of the
experiments with Reelay seemed to take prohibitively long time to process a
given stream, preventing us from reliably measuring the performance at these
values. Generally, we see that our tool has been performing better than Reelay
but slower than the semiring-monitor, at least by an order of magnitude. We also
see that the performance of our tool is roughly independent of the constants in
the formula, as we expected from the analysis of our algorithms. The reported
data is based on the mean of 6 trials of the experiments. The standard deviation
is less than 15% of the mean in each case, and are indicated by whiskers.

A potential explanation for the comparative worse performance of Reelay is
that Reelay stores data values in string-indexed maps. Interval Maps are also
used in Reelay’s implementation of operators such as P[•,•]. Since our tool does
not use any map-like data structure, we do not incur these costs.

We have used the profiling tool Valgrind [57] to analyze the memory con-
sumption of the monitors. In Fig. 11, we plot the peak memory usage of the
monitors for the same formulas as before. For Reelay, we have reported the
performance for three different traces. In the case of the semiring-monitor, the
memory consumption can be explained near-perfectly with the help of the de-
scription of the algorithm (which is very similar to ours). This can be attributed
to the fact that Rust programs have very minimal runtime overheads. The mem-
ory usage of Reelay is somewhat hard to understand, given that it is based on
the Interval Maps data structures. Our tool is implemented in OCaml and its
memory consumption is hard to interpret due to the garbage-collected nature of
the language, however we do see a linear trend in the memory consumption with
sufficiently high values for constants. The memory measurements for all three
tools seemed to be deterministic, i.e, had the same value regardless of when it
was executed.

In Figure 12, we use formulas inspired by the Timescales [58] benchmark
to see how our tool performs when the constants in the formulae are scaled.
The formulas used in the Timescales benchmark are in propositional MTL, so
we define the propositions 𝑝, 𝑞, 𝑟 and 𝑠 as 𝑥 > 0.5, 𝑥 > 0.0, 𝑥 > 0.25 and
𝑥 > 0.75 respectively, where 𝑥 is the value of the current sample in the trace.
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Fig. 11. Microbenchmarks: Formulas with large constants

For different values of 𝑛, the formulas 𝐹0 through 𝐹9 in Figure 12, in order,
are: H(P[0,𝑛]𝑞 → (¬𝑝 S 𝑞)), H(𝑟 → P[0,𝑛](¬𝑝), H((𝑟 ∧ ¬𝑞 ∧ P𝑞) → (¬𝑝 S[𝑛,2𝑛] 𝑞)),
H(P[0,𝑛]𝑞 → (𝑝 S 𝑞)), H(𝑟 → H[0,𝑘]𝑝), H((𝑟 ∧ ¬𝑞 ∧ P𝑞) → (𝑝 S[𝑛,2𝑛] 𝑞)), HP[0,𝑛]𝑝,
H((𝑟 ∧ ¬𝑞 ∧ P𝑞) → (P[0,𝑛](𝑝 ∨ 𝑞) S 𝑞)), H((𝑠 → P𝑛,2𝑛𝑝) ∧ ¬(¬𝑠 S[𝑛,∞) 𝑝)), and
H((𝑟 ∧ ¬𝑞 ∧ P𝑞) → ((𝑠 → P[𝑛,2𝑛]𝑝) ∧ ¬(¬𝑠 S[𝑛,∞) 𝑝))). Implications 𝛼 → 𝛽 were
encoded as ¬𝛼 ∨ 𝛽 and negations were encoded using their negation normal
form. We have executed this experiment using traces with random values. The
reported values are means of 10 trials, and we have used whiskers to denote the
standard deviation.

All experiments were run on a computer with Intel Xeon CPUs 3.30GHz with
16 GB memory running Ubuntu 18.04.

5 Related Work

Fainekos and Pappas [31] introduce the notion of robustness for the interpre-
tation of temporal formulas over discrete and continuous-time signals. In their
setting, signals are represented as (time-dependent) functions that take value in
a metric space. The distance function of the metric space is used to endow the
signal space with a metric – the robustness is taken to be the largest extent to
which a signal can be perturbed while still satisfying (or violating, depending
on the case) the specification. In the same paper, an alternative quantitative se-
mantics is proposed with an inductive definition that replaces disjunction with
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Fig. 12. Throughput for formulas from the Timescales benchmark

max and conjunction with min. This inductive semantics computes an under-
approximation of the actual robustness value. This approach is extended by
Donzé and Maler [27] to include temporal robustness. The inductive semantics
of [31] can be computed efficiently, and forms the basis for the semantics we use.

The inductive semantics could be slightly generalized by interpreting con-
junction (resp., disjunction) with multiplication (resp., addition) in some semir-
ing. This idea subsumes the semantics of this paper since lattices are also semir-
ings. In [46], this semantics is explored and an abstract version of the under-
approximation guarantee from [31] is presented. With our approach, we would
not be able to monitor formulas with this semantics since we make crucial use
of the absorption laws in Lemma 14. In [46], a different approach for monitor-
ing formulas with S[0,𝑎] is discussed that does not rely on this property. Our
lattice-based semantics is considered in a dense-time setting in [47], along with
a performance analysis of its Rust implementation.

The notion of distance between traces from [31] has been generalized in [37]
to a more general algebraic setting using a semiring-based semantics. While
both Mamouras et al. [46] and Jaksic et al. [37] consider truth domains that
are semirings, the two works consider different semantics. Jaksic et al. suggest
the use of symbolic weighted automata for the purpose of monitoring. With this
approach, they are able to compute the precise robustness value for a property-
signal pair.

The distance between two signals can be defined to be the maximum of the
distance between the values that the signals take at corresponding points of
time. However, other ways to define this distance have been considered. In [36],
a quantitative semantics is developed via the notion of weighted edit distance.
Averaging temporal operators are proposed in [4] with the goal of introducing
an explicit mechanism for temporal robustness. The Skorokhod metric [23] has
been suggested as a distance function between continuous signals. In [2], another
metric is considered, which compares the value taken by the signal within a
neighbourhood of the current time. Another interesting view of temporal logic
is in [54], where temporal connectives are viewed as linear time-invariant filters.
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Signal regular expressions (SREs) [60] are another formalism for describing
patterns on signals. They are based on regular expressions, rather than LTL.
SREs are a variant of the timed regular expressions (TREs) of [13], which are
related to timed automata [5]. A robustness semantics for SRE has been proposed
in [15] along with an algorithm for offline monitoring. In [14], STL is enriched
by considering a more general (and quantitative) interpretation of the Until
operator and adding specific aggregation operators.

In [43], a monitoring algorithm for STL is proposed and implemented in the
AMT tool. A later version, AMT 2.0 [52] extends the capabilities of AMT to
an extended version of STL along with TREs. In [26], an efficient algorithm for
monitoring STL is discussed whose performance is linear in the length of the
input trace. This is achieved by using Lemire’s [41] sliding window algorithm
for computing the maximum. This is implemented as a part the monitoring tool
Breach [25]. A dynamic programming approach is used in [24] to design an online
monitoring algorithm. Here, the availability of a predictor is assumed which
predicts the future values, so that the future modalities may be interpreted. A
different approach for online monitoring is taken in [28]: they consider robustness
intervals, that is, the tightest interval which covers the robustness of all possible
extensions of the available trace prefix. There are also monitoring formalisms
that are essentially domain-specific languages for processing data streams, such
as LOLA [22] and StreamQRE [48,8]. LOLA has recently been used as a basis for
RtLOLA [33] in the StreamLAB framework [32], which adds support for sliding
windows and variable-rate streams. A detailed survey on the many extensions
to the syntax and semantics of STL along with their monitoring algorithms and
applications is presented in [16].

In [20], a framework towards the formalization of runtime verification com-
ponents are discussed. MonPoly [19] is a tool developed by Basin et al. aimed
at monitoring a first order extension of temporal logic. In [55], the authors put
forward Verimon, a simplified version of MonPoly which uses the proof assistant
Isabelle/HOL to formally prove its correctness. They extend this line of work
in Verimon+ [17] which verifies a more efficient version of the monitoring algo-
rithms and uses a dynamic logic, which is an extension of the temporal logic with
regular expression-like constructs. A verifying compiler for LOLA specifications
to rust implementations has been developed in [35]. Their toolchain generates
rust code from given LOLA specifications which are decorated with annotations
that can be checked by the Viper [51] toolkit to verify functional correctness.
On the one hand, a rust implementation would perform very well. On the other,
the verification mechanism in this toolchain is based on SMT solvers while ours
is based on the axioms of Coq’s calculus, which is a much smaller system.

6 Conclusion

We have presented a formalization in the Coq proof assistant of a procedure
for constructing online monitors for metric temporal logic with a quantitative
semantics. We have extracted verified OCaml code from the Coq formalization.
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Our experiments show that our formally verified online monitors perform well
in comparison to Reelay [59], a state-of-the-art monitoring tool.

The construction of monitors that we presented can be extended and made
more compositional by using classes of transducers that can support dataflow
combinators [38] (serial, parallel and feedback composition), as seen in [49,45,50].
We leave an exploration of this direction as future work. It is also worth devel-
oping a more thorough benchmark suite to compare the presented monitoring
framework against the tools Breach [25], S-TaLiRo [12], and StreamLAB [32].
We have extracted OCaml code from a Coq formalization, but a formally verified
C implementation would be preferable from a performance standpoint. Another
interesting direction is to increase the expressiveness of our specification formal-
ism: one possible candidate is the extension to dynamic logic, as has been done
in [17] in a qualitative setting.
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ence Foundation award 2008096.
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