
Interfaces for Stream Processing Systems

Rajeev Alur, Konstantinos Mamouras, Caleb Stanford, and Val Tannen

University of Pennsylvania, Philadelphia, PA, USA
{alur,mamouras,castan,val}@cis.upenn.edu

Abstract. Efficient processing of input data streams is central to IoT
systems, and the goal of this paper is to develop a logical foundation for
specifying the computation of such stream processing. In the proposed
model, both the input and output of a stream processing system consists
of tagged data items with a dependency relation over tags that captures
the logical ordering constraints over data items. While a system processes
the input data one item at a time incrementally producing output data
items, its semantics is a function from input data traces to output data
traces, where a data trace is an equivalence class of sequences of data
items induced by the dependency relation. This data-trace transduction
model generalizes both acyclic Kahn process networks and relational
query processors, and can specify computations over data streams with
a rich variety of ordering and synchronization characteristics. To form
complex systems from simpler ones, we define sequential composition
and parallel composition operations over data-trace transductions, and
show how to define commonly used idioms in stream processing such as
sliding windows, key-based partitioning, and map-reduce.

1 Introduction

The last few years have witnessed an explosion of IoT systems in a diverse range
of applications such as smart buildings, wearable devices, and healthcare. A key
component of an effective IoT system is the ability to continuously process in-
coming data streams and make decisions in response in a timely manner. Systems
such as Apache Storm (see storm.apache.org) and Twitter Heron [12] provide
the necessary infrastructure to implement distributed stream processing systems
with the focus mainly on high performance and fault tolerance. What’s less de-
veloped though is the support for high-level programming abstractions for such
systems so that correctness with respect to formal requirements and predictable
performance can be assured at design time. The goal of this paper is to provide
a logical foundation for modeling distributed stream processing systems.

An essential step towards developing the desired formal computational model
for stream processing systems is to understand the interface, that is, the types of
input, the types of output, and the logical computations such systems perform.
(See [8] for the role of interfaces in system design.) As a starting point, we can
view the input to be a sequence of data items that the system consumes one
item at a time in a streaming fashion. Assuming a strict linear order over input

items is however not the ideal abstraction for two reasons. First, in an actual
implementation, the input data items may arrive at multiple physical locations
and there may be no meaningful logical way to impose an ordering among items
arriving at different locations. Second, for the computation to be performed on
the input data items, it may suffice to view the data as a relation, that is, a
bag of items without any ordering. Such lack of ordering also has computational
benefits since it can be exploited for parallelization of the implementation. Par-
tially ordered multisets (pomsets), a structure studied extensively in concurrency
theory [20], generalize both sequences and bags, and thus, assuming the input
of a stream processing system to be a pomset seems general enough.

While the input logically consists of partially ordered data items, a stream
processing system consumes it one item at a time, and we need a representation
that is suitable for such a streaming model of computation. Inspired by the
definition of Mazurkiewicz traces in concurrency theory [18], we model the input
as a data trace. We assume that each data item consists of a tag and a value
of a basic data type associated with this tag. The ordering of items is specified
by a (symmetric) dependency relation over the set of tags. Two sequences of
data items are considered equivalent if one can be obtained from the other by
repeatedly commuting two adjacent items with independent tags, and a data
trace is an equivalence class of such sequences. For instance, when all the tags
are mutually dependent, a sequence of items represents only itself, and when
all the tags are mutually independent, a sequence of items represents the bag of
items it contains. A suitable choice of tags along with the associated dependency
relation, allows us to model input streams with a rich variety of ordering and
synchronization characteristics.

As the system processes each input item in a streaming manner, it responds
by producing output data items. Even though the cumulative output items pro-
duced in a response to an input sequence is linearly ordered based on the order
in which the input gets processed, we need the flexibility to view output items as
only partially ordered. For instance, consider a system that implements key-based
partitioning by mapping a linearly ordered input sequence to a set of linearly
ordered sub-streams, one per key. To model such a system the output items
corresponding to distinct keys should be unordered. For this purpose, we allow
the output items to have their own tags along with a dependency relation over
these tags, and a sequence of outputs produced by the system is interpreted as
the corresponding data trace.

While a system processes the input in a specific order by consuming items
one by one in a streaming manner, it is required to interpret the input sequence
as a data trace, that is, outputs produced while processing two equivalent input
sequences should be equivalent. Formally, this means that a stream processor
defines a function from input data traces to output data traces. Such a data-trace
transduction is the proposed interface model for distributed stream processing
systems. We define this model in section 2, and illustrate it using a variety of
examples and relating it to existing models in literature such as Kahn process
networks [11, 14] and streaming extensions of database query languages [5, 15].

2

In section 3, we define two basic operations on data-trace transductions that
can be used to construct complex systems from simpler ones. Given two data-
trace transductions f and g, the sequential composition f � g feeds the output
data trace produced by f as input to g, and is defined when the output type
of f coincides with the input type of g, while the parallel composition f ‖ g
executes the two in parallel, and is defined when there are no common tags in
the outputs of f and g (that is, the output data items produced by the two
components are independent). We illustrate how these two operations can be
used to define common computing idioms in stream processing systems such as
sliding windows and map reduce.

2 Data-Trace Transductions

In order to describe the behavior of a distributed stream processing system we
must specify its interface, that is: the type of the input stream, the type of the
output stream, and the input/output transformation that the system performs.
This section contains formal descriptions of three key concepts: (1) data traces
for describing finite collections of partially ordered data items, (2) data-trace
transductions for modeling the input/output behavior of a stream processing
system, and (3) data-string transductions for specifying the behavior of sequen-
tial implementations of such systems.

2.1 Data Traces

We use data traces to model streams in which the data items are partially
ordered. Data traces generalize sequences (data items are linearly ordered), rela-
tions (data items are unordered), and independent stream channels (data items
are organized as a collection of linearly ordered subsets). The concatenation
operation, the prefix order, and the residuation operation on sequences can be
generalized naturally to the setting of data traces.

Definition 1 (Data Type). A data type A = (Σ, (Tσ)σ∈Σ) consists of a po-
tentially infinite tag alphabet Σ and a value type Tσ for every tag σ ∈ Σ. The
set of elements of type A is equal to {(σ, d) | σ ∈ Σ and d ∈ Tσ}, which we will
also denote by A. The set of sequences over A is denoted as A∗. ut

Example 2. Suppose we want to process a stream that consists of sensor mea-
surements and special symbols that indicate the end of a one-second interval.
The data type for this input stream involves the tags Σ = {M, #}, where M is
meant to indicate a sensor measurement and # is an end-of-second marker. The
value sets for these tags are TM = N (natural numbers), and T# = U is the unit
type (singleton). So, the data type A = (Σ,TM, T#) contains measurements (M, d),
where d is a natural number, and the end-of-second symbol #. ut

Definition 3 (Dependence Relation and Induced Congruence). A de-
pendence relation on a tag alphabet Σ is a symmetric binary relation on Σ.

3

We say that the tags σ, τ are independent (w.r.t. a dependence relation D)
if (σ, τ) /∈ D. For a data type A = (Σ, (Tσ)σ∈Σ) and a dependence relation
D on Σ, we define the dependence relation that is induced on A by D as
{((σ, d), (σ′, d′)) ∈ A× A | (σ, σ′) ∈ D}, which we will also denote by D. Define
≡D to be the smallest congruence (w.r.t. sequence concatenation) on A∗ con-
taining {(ab, ba) ∈ A∗ ×A∗ | (a, b) /∈ D}. ut

According to the definition of the relation ≡D above, two sequences are
equivalent if one can be obtained from the other by performing commutations
of adjacent items with independent tags.

Example 4 (Dependence Relation). For the data type of Example 2, we
consider the dependence relation D = {(M, #), (#, M), (#, #)}. The dependence
relation can be visualized as an undirected graph:

M

This means that the tag M is independent of itself, and therefore consecutive
M-tagged items are considered unordered. For example, the sequences

(M, 5) (M, 8) (M, 5) # (M, 9) (M, 5) (M, 5) (M, 8) # (M, 9) (M, 8) (M, 5) (M, 5) # (M, 9)

are all equivalent w.r.t. ≡D. ut

Definition 5 (Data Traces, Concatenation, Prefix Relation). A data-
trace type is a pair X = (A,D), where A = (Σ, (Tσ)σ∈Σ) is a data type and
D is a dependence relation on the tag alphabet Σ. A data trace of type X is
a congruence class of the relation ≡D. We also write X to denote the set of
data traces of type X. Since the equivalence ≡D is a congruence w.r.t. sequence
concatenation, the operation of concatenation is also well-defined on data traces:
[u] · [v] = [uv] for sequences u and v, where [u] is the congruence class of u. We
define the relation ≤ on the data traces of X as a generalization of the prefix
partial order on sequences: for data traces u and v of type X, u ≤ v iff there
are sequences u ∈ u and v ∈ v such that u ≤ v (i.e., u is a prefix of v). ut

The relation ≤ on data traces of a fixed type is easily checked to be a partial
order. Since it generalizes the prefix order on sequences (when the congruence
classes of ≡D are singleton sets), we will call ≤ the prefix order on data traces.

Example 6 (Data Traces). Consider the data-trace type X = (A,D), where
A is the data type of Example 2 and D is the dependence relation of Exam-
ple 4. A data trace of X can be represented as a sequence of multisets (bags)
of natural numbers and visualized as a pomset. For example, the data trace
that corresponds to the sequence (M, 5) (M, 7) # (M, 9) (M, 8) (M, 9) # (M, 6) can be
visualized as the following labeled partial order (pomset)

(M, 5)

(M, 7)
(M, 8)

(M, 9)

(M, 9)

(M, 6)

4

where a line from left to right indicates that the item on the right must occur
after the item on the left. The end-of-second markers # separate multisets of
natural numbers. So, the set of data traces of X has an isomorphic representation
as the set Bag(N)+ of nonempty sequences of multisets of natural numbers.
In particular, the empty sequence ε is represented as ∅ and the single-element
sequence # is represented as ∅ ∅. ut

Let us observe that a singleton tag alphabet can be used to model sequences
or multisets over a basic type of values. For the data type given by Σ = {σ}
and Tσ = T there are two possible dependence relations for Σ, namely ∅ and
{(σ, σ)}. The data traces of (Σ,T, ∅) are multisets over T , which we denote as
Bag(T), and the data traces of (Σ,T, {(σ, σ)}) are sequences over T .

Let us consider the slightly more complicated case of a tag alphabet Σ =
{σ, τ} consisting of two elements (together with data values sets Tσ and Tτ).
The two tags can be used to describe more complex sets of data traces:

1. Dependence relation D = {(σ, σ), (σ, τ), (τ, σ), (τ, τ)}: The set of data traces
is (up to a bijection) (Tσ ⊕ Tτ)∗, where ⊕ is the disjoint union operation.

2. D = {(σ, σ), (τ, τ)}: The set of data traces is T∗σ × T∗τ .
3. D = {(σ, σ), (σ, τ), (τ, σ)}: In a data trace the items tagged with σ separate

(possibly empty) multisets of items tagged with τ . For example:

σ σ
τ
τ

σ σ τ
τ

τ
σ τ

So, the set of data traces is Bag(Tτ) · (Tσ ·Bag(Tτ))∗, where · is the concate-
nation operation for sequences.

4. D = {(σ, σ)}: The set of data traces is T∗σ × Bag(Tτ).
5. D = {(σ, τ), (τ, σ)}: A data trace is an alternating sequence of σ-multisets

(multisets with data items tagged with σ) and τ -multisets. More formally,
the set of data traces is

{ε} ∪ Bag1(Tσ) · (Bag1(Tτ) · Bag1(Tσ))∗ · Bag(Tτ)

∪ Bag1(Tτ) · (Bag1(Tσ) · Bag1(Tτ))∗ · Bag(Tσ),

where Bag1(T) is the set of nonempty multisets over T .
6. D = ∅: The set of data traces is Bag(Tσ ⊕ Tτ), which is isomorphic to

Bag(Tσ)× Bag(Tτ).

The cases that have been omitted are symmetric to the ones presented above.

Example 7 (Multiple Input and Output Channels). Suppose we want to
model a streaming system with multiple independent input and output chan-
nels, where the items within each channel are linearly ordered but the channels
are completely independent. These assumptions are appropriate for distributed
streaming systems, where the channels are implemented as network connections.

5

≡

I1

I2

I1 I2

Fig. 1. Multiple channels I1 and I2, displayed on the left graphically, and on the right
as the single trace type which actually defines them.

This is the setting of (acyclic) Kahn Process Networks [11] and the more re-
stricted synchronous dataflow models [14]. We introduce tags ΣI = {I1, . . . , Im}
for m input channels, and tags ΣO = {O1, . . . , On} for n output channels. The
dependence relation for the input consists of all pairs (Ii, Ii) with i = 1, . . . ,m.
This means that for all indexes i 6= j the tags Ii and Ij are independent. Sim-
ilarly, the dependence relation for the output consists of all pairs (Oi, Oi) with
i = 1, . . . , n. Assume that the value types associated with the input tags are T1,
. . . , Tm, and the value types associated with the output tags are U1, . . . , Un. As
we will show later in Proposition 10, the sets of input and output data traces
are (up to a bijection) T∗1 × · · · × T∗m and U∗1 × · · · × U∗m respectively. ut

Definition 8 (Residuals). Let u and v be sequences over a set A. If u is a
prefix of v, then we define the residual of v by u, denoted u−1v, to be the unique
sequence w such that v = uw.

Let X be a data-trace type. Suppose u and v are of type X with u ≤ v.
Choose any representatives u and v of the traces u and v respectively such that
u ≤ v. Then, define the residual of v by u to be u−1v = [u−1v]. ut

The left cancellation property of Lemma 9 below is needed for establishing
that the residuation operation of Definition 8 is well-defined on traces, i.e. the
trace [u−1v] does not depend on the choice of representatives u and v. It follows
for traces u, v with u ≤ v that u−1v is the unique trace w s.t. v = u ·w.

Lemma 9 (Left and Right Cancellation). Let X = (A,D) be a data-trace
type. The following properties hold for all sequences u, u′, v, v′ ∈ A∗:
1. Left cancellation: If u ≡D u′ and uv ≡D u′v′ then v ≡D v′.
2. Right cancellation: If v ≡D v′ and uv ≡D u′v′ then u ≡D u′. ut

Proposition 10 (Independent Ordered Channels). Let A be the data type
with tag alphabet consisting of C1, . . . , Cn, and with respective value types
T1, . . . , Tn. Define the data-trace type X = (A,D), where D = {(Ci, Ci) | i =
1, . . . , n} is the dependence relation. The set of data traces X is isomorphic to
Y = T∗1 × · · · × T∗n , where the concatenation operation on the elements of Y is
defined componentwise.

Proposition 10 establishes a bijection between Y = T∗1 × · · · × T∗n and a set
of appropriately defined data traces X. The bijection involves the concatenation
operation. This implies that the prefix order and the residuation operation can

6

be defined on Y so that they agree with the corresponding structure on the data
traces. Since · on Y is componentwise concatenation, the order ≤ on Y is the
componentwise prefix order. Finally, residuals are also defined componentwise
on Y . So, the expanded structures (Y, ·,≤,−1) and (X, ·,≤,−1) are isomorphic.

Proposition 11 (Independent Unordered Channels). Let A be the data-
trace type with tag alphabet consisting of C1, . . . , Cn, and with respective
value types T1, . . . , Tn. Define the data-trace type X = (A,D), where D = ∅
is the dependence relation. The set of data traces X is isomorphic to Y =
Bag(T1)× · · · × Bag(Tn), where the concatenation operation on the elements of
Y is componentwise multiset union. ut

Given the isomorphism between Y = Bag(T1)× · · · ×Bag(Tn) and the set of
data traces described in Proposition 11, we define the prefix relation and residu-
ation on Y that are induced by · on Y as follows: ≤ is defined as componentwise
multiset containment, and (P1, . . . , Pn)−1(Q1, . . . , Qn) = (Q1 \ P1, . . . , Qn \ Pn)
where \ is the multiset difference operation. It follows that this additional struc-
ture on Y agrees with the corresponding structure on the traces.

2.2 Data-Trace Transductions

Data-trace transductions formalize the notion of an interface for stream pro-
cessing systems. Consider the analogy with a functional model of computation:
the interface of a program consists of the input type, the output type, and a
mapping that describes the input/output behavior of the program. Correspond-
ingly, the interface for a stream processing systems consists of: (1) the type X
of input data traces, (2) the type Y of output data traces, and (3) a monotone
mapping β : X → Y that specifies the cumulative output after having consumed
a prefix of the input stream. The monotonicity requirement captures the idea
that output items cannot be retracted after they have been omitted. Since a
transduction is a function from trace histories, it allows the modeling of systems
that maintain state, where the output that is emitted at every step depends
potentially on the entire input history.

Definition 12 (Data-Trace Transductions). Let X = (A,D) and Y =
(B,E) be data-trace types. A data-trace transduction with input type X and
output type Y is a function β : X → Y that is monotone w.r.t. the prefix order
on data traces: u ≤ v implies that β(u) ≤ β(v) for all traces u,v ∈ X. We write
T (X,Y) to denote the set of all data-trace transductions from X to Y . ut

Fig. 2 visualizes a data-trace transduction β : X → Y as a block diagram
element, where the input wire is annotated with the input type X and the output
wire is annotated with the output type Y .

Example 13. Suppose the input is a sequence of natural numbers, and we want
to define the data-trace transduction that outputs the current data item if it is

7

β
M

T# = U, TM = N

M

TM = N

Fig. 2. A stream processing interface (data-trace transduction), consisting of (1) the
input trace type, (2) the output trace type, and (3) the monotone map β.

strictly larger than all data items seen so far. This is described by the trace
transduction β : N∗ → N∗, given by β(ε) = ε and

β(a1 . . . an−1an) =

{
β(a1 . . . an−1) an, if an > ai for all i = 1, . . . , n− 1;

β(a1 . . . an−1), otherwise.

In particular, the definition implies that β(a1) = a1. The table

current item input history β output
ε ε

3 3 3
1 3 1 3
5 3 1 5 3 5
2 3 1 5 2 3 5

gives the values of the transduction β for all prefixes of the stream 3 1 5 2. ut

2.3 Data-String Transductions

In the previous section we defined the notion of a data-trace transduction, which
describes abstractly the behavior of a distributed stream processing system using
a monotone function from input data traces to output data traces. In a sequen-
tial implementation of a stream processor the input is consumed in a sequential
fashion, i.e. one item at a time, and the output items are produced in a spe-
cific linear order. Such sequential implementations are formally represented as
data-string transductions. We establish in this section a precise correspondence
between string transductions and trace transductions. We identify a consistency
property that characterizes when a string transduction implements a trace trans-
duction of a given input/output type. Moreover, we show how to obtain from a
given trace transduction the set of all its possible sequential implementations.

Definition 14 (Data-String Transductions). Let A and B be data types.
A data-string transduction with input type A and output type B is a function
f : A∗ → B∗. Let S(A,B) be the set of string transductions from A to B. ut

A data-string transduction f : A∗ → B∗ describes a streaming computation
where the input items arrive in a linear order. For an input sequence u ∈ A∗
the value f(u) gives the output items that are emitted right after consuming the

8

sequence u. In other words, f(u) is the output that is triggered by the arrival of
the last data item of u. We say that f is a one-step description of the computation
because it gives the output increment that is emitted at every step.

Let A be an arbitrary set, Y be a data-trace type, and f : A∗ → Y . We
define the lifting of f to be the function f : A∗ → Y that maps a sequence
a1a2 . . . an ∈ A∗ to f(a1a2 . . . an) = f(ε) · f(a1) · f(a1a2) · · · f(a1a2 . . . an). In
particular, the definition implies that f(ε) = f(ε). That is, f accumulates the
outputs of f for all prefixes of the input. Notice that f is monotone w.r.t. the
prefix order: u ≤ v implies that f(u) ≤ f(v) for all u, v ∈ A∗. Suppose now
that ϕ : A∗ → Y is a monotone function. The derivative ∂ϕ : A∗ → Y of ϕ is
defined as follows: (∂ϕ)(ε) = ϕ(ε) and (∂ϕ)(ua) = ϕ(u)−1ϕ(ua) for all u ∈ A∗
and a ∈ A. Notice that in the definition of ∂ we use the residuation operation
of Definition 8. The lifting and derivative operators witness a bijection between
the class of functions from A∗ to Y and the monotone subset of this class. That
is, ∂f = f for every f : A∗ → Y and ∂ϕ = ϕ for every monotone ϕ : A∗ → Y .

Definition 15 (The Implementation Relation). Let X = (A,D) and Y =
(B,E) be data-trace types. We say that a string transduction f : A∗ → B∗
implements a trace transduction β : X → Y (or that f is a sequential imple-
mentation of β) if β([u]) = [f(u)] for all u ∈ A∗. ut

An implementation f of a trace transduction β is meant to give the output
increment that is emitted at every step of the streaming computation, assuming
the input is presented as a totally ordered sequence. That is, for input u the
value f(u) gives some arbitrarily chosen linearization of the output items that
are emitted after consuming u. The lifting f gives the cumulative output that
has been emitted after consuming a prefix of the input stream.

Example 16. The trace transduction β of Example 13 can be implemented as
a string transduction f : N∗ → N∗, given by f(ε) = ε and

f(a1 . . . an−1an) =

{
an, if an > ai for all i = 1, . . . , n− 1;

ε, otherwise.

The following table gives the values of the implementation f on input prefixes:

current item input history f output β output
ε ε ε

3 3 3 3
1 3 1 ε 3
5 3 1 5 5 3 5
2 3 1 5 2 ε 3 5

Notice in the table that β(3 1 5 2) = f(ε) · f(3) · f(3 1) · f(3 1 5) · f(3 1 5 2). ut

Definition 17 (Consistency). Let X = (A,D) and Y = (B,E) be data-trace
types. A data-string transduction f ∈ S(A,B) is (X,Y)-consistent if u ≡D v
implies f(u) ≡E f(v) for all u, v ∈ A∗. ut

9

Definition 17 essentially says that a string transduction f is consistent when
it gives equivalent cumulative outputs for equivalent input sequences. The def-
inition of the consistency property is given in terms of the lifting f̄ of f . An
equivalent formulation of this property, which is expressed directly in terms of
f , is given in Theorem 18 below.

Theorem 18 (Characterization of Consistency). Let X = (A,D) and Y =
(B,E) be data-trace types, and f ∈ S(A,B). The function f is (X,Y)-consistent
if and only if the following two conditions hold:
(1) For all u ∈ A∗ and a, b ∈ A, (a, b) /∈ D implies f(ua)f(uab) ≡E f(ub)f(uba).
(2) For all u, v ∈ A∗ and a ∈ A, u ≡D v implies that f(ua) ≡E f(va). ut

The following theorem establishes a correspondence between string and trace
transductions. The consistent string transductions are exactly the ones that im-
plement trace transductions. Moreover, the set of all implementations of a trace
transduction can be given as a dependent function space by ranging over all
possible linearizations of output increments. In other words, an implementation
results from a trace transduction by choosing output increment linearizations.

Theorem 19 (Trace Transductions & Implementations). Let X = (A,D)
and Y = (B,E) be data-trace types. The following hold:
(1) A data-string transduction f of S(A,B) implements some trace transduction

of T (X,Y) iff f is (X,Y)-consistent.
(2) The set of all implementations of a data-trace transduction β ∈ T (X,Y) is

the dependent function space
∏
u∈A∗(∂γ)(u), where the function γ : A∗ → Y

is given by γ(u) = β([u]) for all u ∈ A∗. ut

Part (2) of Theorem 19 defines the monotone function γ : A∗ → Y in terms
of the trace transduction β. Intuitively, γ gives the cumulative output trace for
every possible linearization of the input trace. It follows that ∂γ : A∗ → Y gives
the output increment, which is a trace, for every possible input sequence. So,
the lifting of ∂γ is equal to γ. Finally, an implementation of β can be obtained
by choosing for every input sequence u ∈ A∗ some linearization of the output
increment (∂γ)(u) ∈ Y . In other words, any implementation of a data-trace
transduction is specified uniquely by a linearization choice function for all pos-
sible output increments. For the special case where the function [·] : B∗ → Y is
injective, i.e. every trace of Y has one linearization, there is exactly one imple-
mentation for a given trace transduction. We will describe later in Example 21
a trace transduction that has several different sequential implementations.

2.4 Examples of Data-Trace Transductions

In this section we present examples that illustrate the concept of a data-trace
transduction and its implementations for several streaming computations on
streams of partially ordered elements. We start by considering examples that fit
into the model of process networks [11, 14], where the inputs and outputs are
organized in collections of independent linearly ordered channels.

10

merge
σ τ

Tσ = Tτ = T

o

To = T
copy

σ

Tσ = T

σ τ

Tσ = Tτ = T

Fig. 3. Stream processing interfaces for merge (Example 20) and copy (Example 21).

Example 20 (Deterministic Merge). Consider the streaming computation
where two linearly ordered input channels are merged into one. More specifically,
this transformation reads cyclically items from the two input channels and passes
them unchanged to the output channel. As described in Example 7, the input
type is specified by the tag alphabet Σ = {σ, τ} with data values T for each
tag, and the dependence relation D = {(σ, σ), (τ, τ)}. So, an input data trace
is essentially an element of T∗ × T∗. The output type is specified by the tag
alphabet {o}, the value type To = T , and the dependence relation {(o, o)}. So,
the set of output data traces is essentially T∗. See the left diagram in Fig. 3.
The trace transduction merge : T∗ × T∗ → T∗ is given as follows:

merge(x1 . . . xm, y1 . . . yn) =

{
x1 y1 . . . xm ym, if m ≤ n;

x1 y1 . . . xn yn, if m > n.

The sequential implementation of merge can be represented as a function f :
A∗ → T∗ with A = ({σ} × T) ∪ ({τ} × T), where f(ε) = ε and

f(w (σ, x)) =

{
x ym+1, if length(w|σ) = m, w|τ = y1 . . . yn and m < n

ε, otherwise

f(w (τ, y)) =

{
xn+1 y, if w|σ = x1 . . . xm, length(w|τ) = n and n < m

ε, otherwise

for all w ∈ A∗. For an input tag, σ w|σ is the subsequence obtained from w by
keeping only the values of the σ-tagged items. ut

Example 21 (Copy). The copy transformation creates two copies of the input
stream by reading each item from the input channel and copying it to two
output channels. An input data trace is an element of T∗, and an output data
trace is an element of T∗ × T∗. See the right diagram in Fig. 3. The trace
transduction for this computation is given by copy(u) = (u, u) for all u ∈ T∗.
A possible implementation of copy can be given as f : T∗ → B∗, where B =
({σ}× T)∪ ({τ}× T). We put f(ε) = ε and f(ua) = (σ, a) (τ, a) for all u ∈ A∗.
Notice that the implementation makes the arbitrary choice to emit (σ, a) before
(τ, a), but it is also possible to emit the items in reverse order. ut

Example 22 (Key-based Partitioning). Consider the computation that
maps a linearly ordered input sequence of data items of type T (each of which

11

contains a key), to a set of linearly ordered sub-streams, one per key. The func-
tion key : T → K extracts the key from each input value. The input type is
specified by a singleton tag alphabet {σ}, the data value set T , and the de-
pendence relation {(σ, σ)}. The output type is specified by the tag alphabet
K, value types Tk = T for every key k ∈ K, and the dependence relation
{(k, k) | k ∈ K}. So, an input trace is represented as an element of T∗, and
an output trace can is represented as a K-indexed tuple, that is, a function
K → T∗. The trace transduction partitionkey : T∗ → (K → T∗) describes the
partitioning of the input stream into sub-streams according to the key extrac-
tion map key: partitionkey(u)(k) = u|k for all u ∈ T∗ and k ∈ K, where u|k
denotes the subsequence of u that consists of all items whose key is equal to k.
The unique implementation of this transduction can be represented as a function
f : T∗ → (K × T)∗ given by f(ε) = ε and f(wx) = (key(x), x) for all w ∈ T∗
and x ∈ T . ut

Proposition 10 states that a set T∗1 × · · · × T∗m can be isomorphically repre-
sented as a set of data traces, and also that the prefix relation on the traces corre-
sponds via the isomorphism to the componentwise prefix order on T∗1 ×· · ·×T∗m.
Theorem 23 then follows immediately.

Theorem 23. Every monotone function F : T∗1 × · · · × T∗m → U∗1 × · · · × U∗n
can be represented as a data-trace transduction.

Another important case is when the input stream is considered to be un-
ordered, therefore any finite prefix should be viewed as a multiset (relation) of
data items. In this case, any reasonable definition of a streaming transduction
should encompass the monotone operations on relations. Monotonicity implies
that as the input relations get gradually extended with more tuples, the output
relations can also be incrementally extended with more tuples. This computation
is consistent with the streaming model, and it fits naturally in our framework.

Example 24 (Operations of Relational Algebra). First, we consider the
relation-to-relation operations map and filter that are generalizations of the
operations project and select from relational algebra. Suppose that the sets of
input and output data traces are (up to a bijection) Bag(T). Given a function
op : T → T and a predicate φ ⊆ T , the trace transductions mapop : Bag(T) →
Bag(T) and filterφ : Bag(T)→ Bag(T) are defined by:

mapop(M) = {op(a) | a ∈M} filterφ(M) = {a ∈M | a ∈ φ}

for every multiset M over T . The respective sequential implementations mapop :

T∗ → T∗ and filterφ : T∗ → T∗ are defined as follows:

mapop(ε) = ε filterφ(ε) = ε

mapop(wa) = op(a) filterφ(wa) = a, if a ∈ φ filterφ(wa) = ε, if a /∈ φ

for all w ∈ T∗ and a ∈ T .

12

Consider now the relational join operation for relations over T w.r.t. the
binary predicate θ ⊆ T ×T . An input data trace can be viewed as an element of
Bag(T)× Bag(T), and an output trace as an element of Bag(T × T). The trace
transduction joinθ : Bag(T)× Bag(T)→ Bag(T × T) is given by

joinθ(M,N) = {(a, b) ∈M ×N | (a, b) ∈ θ} for multisets M , N over T .

Suppose the names of the input relations are Q and R respectively. An imple-
mentation of θ-join can be represented as a function joinθ : {(Q, d), (R, d) | d ∈
T}∗ → (T × T)∗, given by joinθ(ε) = ε and

joinθ(w (Q, d)) = filterθ((d, d1) (d, d2) . . . (d, dn)),

where (R, d1), (R, d2), . . . , (R, dn) are the R-tagged elements that appear in the
sequence w (from left to right). The function joinθ is defined symmetrically when
the input ends with a R-tagged element.

The relational operation that removes duplicates from a relation has a sequen-
tial implementation that can be represented as a function distinct : T∗ → T∗,
given by distinct(ε) = ε and

distinct(wa) =

{
a, if a does not appear in w

ε, if a appears in w

for all w ∈ T∗ and a ∈ T . ut

Example 24 lists several commonly used relational operations that can be
represented as data-trace transductions. In fact, every monotone relational op-
eration is representable, as stated in Theorem 25 below. The result follows im-
mediately from Proposition 11.

Theorem 25. Every monotone operator F : Bag(T1)×· · ·×Bag(Tn)→ Bag(T)
can be represented as a data-trace transduction.

Consider now the important case of computing an aggregate (such as sum,
max, and min) on an unordered input. This computation is meaningful for a
static input relation, but becomes meaningless in the streaming setting. Any
partial results depend on a particular linear order for the input tuples, which
is inconsistent with the notion of an unordered input. So, for a computation
of relational aggregates in the streaming setting we must assume that the input
contains linearly ordered punctuation markers that trigger the emission of output
(see [15] for a generalization of this idea). The input can then be viewed as an
ordered sequence of relations (each relation is delineated by markers), and it is
meaningful to compute at every marker occurrence an aggregate over all tuples
seen so far. Our formal definition of data-trace transductions captures these
subtle aspects of streaming computation with relational data.

Example 26 (Streaming Maximum). Suppose the input stream consists of
unordered natural numbers and special symbols # that are linearly ordered. We

13

smax
σ

T# = U, Tσ = N

σ

Tσ = N

Fig. 4. Stream processing interface for streaming maximum (Example 26).

will specify the computation that emits at every # occurrence the maximum of
all numbers seen so far. More specifically, the input type is given by Σ = {σ, τ},
Tσ = N, Tτ = U (unit type), and D = {(σ, τ), (τ, σ), (τ, τ)}. So, an input data
trace is essentially a nonempty sequence of multisets of numbers, i.e. an element
of Bag(N)+. The correspondence between traces and elements of Bag(N)+ is
illustrated by the following examples:

ε 7→ ∅ 1 2 7→ {1, 2} 1 2 # 3 7→ {1, 2} {3}
1 7→ {1} 1 2 # 7→ {1, 2} ∅ 1 2 # 3 # 7→ {1, 2} {3} ∅

The streaming maximum computation is described by the trace transduction
smax : Bag(N)+ → N∗, given as: smax(R) = ε, smax(R1R2) = max(R1), and

smax(R1 . . . Rn) = max(R1) max(R1 ∪R2) · · · max(R1 ∪R2 ∪ · · · ∪Rn−1).

Notice that the last relation Rn of the input sequence is the collection of elements
after the last occurrence of a # symbol, and therefore they are not included in
any maximum calculation above. The sequential implementation of smax can
be represented as a function f : (N ∪ {#})∗ → N∗, which outputs at every #

occurrence the maximum number seen so far. That is, f(ε) = ε and

f(a1a2 . . . an) =

{
ε, if an ∈ N;

max of {a1, a2, . . . , an} \ {#}, if an = #.

for all sequences a1a2 . . . an ∈ (N ∪ {#})∗. ut

3 Operations on Data-Trace Transductions

In many distributed stream processing algorithms, the desired computation is
passed through nodes which are composed in parallel and in sequence. Both
composition operations can be implemented concurrently with potential time
savings, and the decomposition makes this concurrency visible and exploitable.
Crucial to the usefulness of an interface model, therefore, is that these composi-
tion operations correspond to semantic composition operations on the interfaces.
In turn, given an interface for the overall computation, we may reason that only
some distributed decompositions are possible.

In this section we define the sequential composition of two data-trace trans-
ductions, and the parallel composition of a (possibly infinite) family of data-trace

14

split

smax1

smax2

max-merge
σ

T# = U
Tσ = N

#1 σ1

#2 σ2

σ1

σ2

σ

Tσ = N

Fig. 5. Distributed evaluation of smax (Example 27).

transductions. We then define the implementation of both of these operations
as operations on string transductions. A general block diagram, without feed-
back, can be obtained by the combination of (string or trace) transductions in
sequence and in parallel.

Example 27 (Distributed evaluation of smax). For example, consider the
problem of computing the maximum (smax), as in Example 26. We notice that
the σ-tagged natural numbers are independent, forming a multiset, so the multi-
set could be split into multiple smaller sets and handled by separate components.
To do so, we first have a component which copies the synchronization tags #

into #1 and #2, and alternates sending σ tags to σ1 and σ2. This split component
breaks the input stream into two independent streams. Next, components smax1

and smax2, which are instances of smax, handle each of the two input streams
{σ1, #1} and {σ2, #2} separately, producing output tagged σ1 and σ2. Finally,
a variant of Example 20, max-merge, can be constructed which takes one σ1
and one σ2 output and, rather than just producing both, maximizes the two
arguments to produce a single σ tag. Altogether, the resulting block diagram of
Figure 5 computes smax. We write:

smax = split� (smax1 ‖ smax2)�max-merge,

which is an important sense in which computations like Streaming Maximum
can be parallelized. ut

Definition 28 (Sequential Composition). Let X,Y, and Z be data-trace
types, and let α ∈ T (X,Y) and β ∈ T (Y, Z) be data-trace transductions. The
sequential composition of α and β, denoted γ = α� β, is the data-trace trans-
duction in T (X,Z) defined by γ(u) = β(α(u)) for all u ∈ X. ut

Definition 29 (Parallel Composition). Let I be any index set. For each
i ∈ I, let Xi = (Ai, Di) and Yi = (Bi, Ei) be trace types, and let αi ∈ T (Xi, Yi).
We require that for all i 6= j, Ai is disjoint from Aj and Bi is disjoint from Bj .
Additionally, we require that αi(ε) = ε for all but finitely many i.

Let A =
⋃
i∈I Ai, B =

⋃
i∈I Bi, D =

⋃
i∈I Di, and E =

⋃
i∈I Ei. Let X =

(A,D) and Y = (B,E). The parallel composition of all αi, denoted α =
∥∥
i∈Iαi,

15

is the data-trace transduction in T (X,Y) defined by α(u)|Yi
= αi(u|Xi

), for all
u ∈ X and for all i ∈ I. Here |Yi

means the projection of a trace to Yi. ut

Definition 28 gives a well-defined trace transduction because the composition
of monotone functions is monotone. In Definition 29, we have defined the value
of α(u) by specifying the component of the output in each of the independent
output streams Yi. Specifically, a trace in Y is given uniquely by a trace in Yi
for each i, and the only restriction is that finitely many of the traces Yi must be
non-empty. Since each character in u only projects to one Xi and since αi(ε) = ε
for all but finitely many i, we satisfy this restriction, and parallel composition
is well-defined. For only two (or a finite number) of channels, we can use the
notation f1 ‖ f2 instead of

∥∥
i∈Ifi.

Proposition 30 (Basic Properties). Whenever binary operations � and ‖
are defined, � is associative and ‖ is associative and commutative.

Definition 31 (Implementation of Sequential Composition). Let A,B,
and C be data types. Let f ∈ S(A,B) and g ∈ S(B,C) be data-string transduc-
tions. The sequential composition of f and g, written h = f � g, is the unique
data-string transduction in S(A,C) satisfying h = g◦f . I.e., h(u) = ∂(g◦f). ut

On input an item a ∈ A, we pass it to f , collect any result, and pass the
result of that to g (if any). Because there may be multiple intermediate outputs
from f , or none at all, this is most succinctly expressed by ∂(g ◦ f).

Lemma 32. Let X = (A,D), Y = (B,E), Z = (C,F) be data-trace types,
α ∈ T (X,Y), and β ∈ T (Y,Z). If f ∈ S(A,B) implements α and g ∈ S(B,C)
implements β, then f � g implements α� β.

Definition 33 (Implementation of Parallel Composition). Let (I,<) be
an ordered index set. For each i, let Ai, Bi be data types and let fi ∈ S(Ai, Bi)
be a data-string transduction. As in Definition 29, we require that for all i 6= j,
Ai is disjoint from Aj and Bi is disjoint from Bj ; Also as in Definition 29,
assume that fi(ε) = ε for all but finitely many i, say i1 < i2 < · · · < im.
Define A =

⋃
iAi and B =

⋃
iBi. The parallel composition of all fi, written

f =
∥∥
i∈(I,<)

fi, is the data-string transduction in S(A,B) defined as follows.

First, f(ε) = fi1(ε)fi2(ε) · · · fim(ε). Second, for all i, for all ai ∈ Ai, and for all
u ∈ A∗, f(uai) = fi(u|Aiai), where u|Ai is the projection of u to Ai. ut

We initially output fi(ε) for any i for which that is nonempty. Then, on input
an item ai ∈ Ai, we pass it to fi, collect any result, and output that result (if
any). Thus, while the definition allows an infinite family of string transductions,
on a finite input stream only a finite number will need to be used.

The index set must be ordered for the reason that, on input ε, we need
to produce the outputs fi(ε) in some order. By Theorem 19, any data-trace
transduction can be implemented by some data-string transduction, and this
construction picks just one possible implementation. Other than on input ε, the
order does not matter. Regardless of the order, the following lemma states that
we implement the desired data-trace transduction.

16

Lemma 34. Let I be an (unordered) index set. Let Xi = (Ai, Di), Yi =
(Bi, Ei), and αi ∈ T (Xi, Yi), such that the parallel composition α =

∥∥
i∈Iαi

is defined. If fi ∈ S(Ai, Bi) implements αi for all i, then for any ordering (I,<)
of I, f =

∥∥
i∈(I,<)

fi implements α.

We now illustrate various examples of how these composition operations on
trace transductions, which can be implemented as string transductions, can be
used.

Example 35 (Partition by key, Reduce & Collect). Consider an input
data stream of credit card transactions. For simplicity, we assume that each data
item is simply a key-value pair (k, v), where k is a key that identifies uniquely
a credit card account and v is the monetary value of a purchase. We write K
to denote the set of keys, and V for the set of values. Suppose that the input
stream contains additionally end-of-minute markers #, which indicate the end of
each one-minute interval and are used to trigger output. We want to perform
the following computation: “find at the end of each minute the the maximum
total purchases associated with a credit card account”. This computation can
be structured into a pipeline of three stages:
1. Stage partition: Split the input stream into a set of sub-streams, one for each

key. The marker items # are propagated to every sub-stream.

input type : tags K ∪ {#},
values Tk = V for every k ∈ K and T# = U,

full dependence relation (K ∪ {#})× (K ∪ {#})
output type : tags K ∪ {#k | k ∈ K},

values T ′k = V and T ′#k = U for every k ∈ K,

dependencies
⋃
k∈K({k, #k} × {k, #k})

The definition of the data-trace transduction is similar to the one in Exam-
ple 22, with the difference that # markers have to be propagated to every
output channel.

2. For each key k ∈ K perform a reduce operation, denoted reducek, that
outputs at every occurrence of a # symbol the total of the values over the
entire history of the k-th sub-stream. For reducek we have:

input : tags {k, #k}, values V and U, dependencies {k, #k} × {k, #k}
output : tags {k}, values V , dependencies {k} × {k}

The overall reduce stage is the parallel composition ‖k∈K reducek.
3. The outputs of all the reduce operations (one for each key, triggered by

the same occurrence of #) are aggregated using a collect operation, which
outputs the maximum of the intermediate results.

input : tags K, values V for each k ∈ K, dependencies {(k, k) | k ∈ K}
output : tags {o}, values V , dependencies {(o, o)}

17

partition

reduce1

reduce2

collect

#

k1 k2

T# = U
Tk1 = Tk2 = V

#1 k1

#2 k2

k1

k2

o

To = V

Fig. 6. Partition by key, reduce, and collect with two keys (Example 35).

The overall streaming map-reduce computation is given by a sequential compo-
sition with three stages: partition� (‖k∈K reducek)� collect.

Example 36 (Streaming Variant of Map-Reduce [9]). Suppose the
input data stream contains key-value pairs, where the input keys K are partition
identifiers and the values V are fragments of text files. The intermediate keys
K ′ are words, and the corresponding values V ′ are natural numbers. The input
stream contains additionally special markers # that are used to trigger output.
The overall computation is the following: “output at every # occurrence the word
frequency count for every word that appeared since the previous # occurrence”.
So, this is a tumbling window version of a map-reduce operation on a static data
set [9]. The computation can be expressed as a pipeline of five stages:
1. Stage partition: Split the stream into a set of sub-streams, one for each input

key. The marker items # are propagated to every sub-stream. This stage is
similar to the one described in Example 35.

2. Stage map: Apply a function map : K × V → (K ′ × V ′)∗ function to each
key-value pair of the input stream. This function scans the text fragment
and outputs a pair (w, 1) for every word w that it encounters. The marker
items # are propagated to every sub-stream. This stage is expressed as the
parallel composition of transductions {mapk | k ∈ K} with input/output
types:

input type : tags {k, #k},
values V for the tag k, and U for the tag #k,

dependence relation {k, #k} × {k, #k}
output type : tags {k, #k},

values K ′ × V ′ for the tag k, and U for the tag #k,

dependence relation {k, #k} × {k, #k}

3. Stage reshuffle: The outputs from all mapk, k ∈ K, transductions between
consecutive # occurrences are collected and reorganized on the basis of the

18

intermediate keys.

input type : tags K ∪ {#k | k ∈ K},
values K ′ × V ′ for the every tag k ∈ K, and U for every tag #k,

dependence relation
⋃
k∈K({k, #k} × {k, #k})

output type : tags K ′ ∪ {#k′ | k′ ∈ K ′},
values V ′ for the every tag k′ ∈ K ′, and U for every tag #k′ ,

dependencies
⋃
k′∈K′{(k′, #k′), (#k′ , k′), (#k′ , #k′)}

4. Stage reduce: For each intermediate key k′ ∈ K ′ perform a reduce operation,
denoted reducek′ , that outputs at every occurrence of a # the total frequency
count for the word k′ since the previous occurrence of a # symbol. The data-
trace types for reducek we have:

input type : tags {k′, #k′},
values V ′ for the tag k′, and U for the tag #k′ ,

dependencies {(k′, #k′), (#k′ , k′), (#k′ , #k′)}
output type : tags {k′, #k′},

values V ′ for the tag k′, and U for the tag #k′ ,

dependencies {(k′, #k′), (#k′ , k′), (#k′ , #k′)}

The overall reduce stage is the parallel composition reducek′1 ‖ · · · ‖ reducek′n ,
where k′1, . . . , k′n is an enumeration of the intermediate keys.

5. Stage collect: The outputs of all the reduce operations (one for each key,
triggered by the same occurrence of #) are collected into a single multiset.

input type : tags K ′ ∪ {#k′ | k′ ∈ K ′},
values V ′ for the every tag k′ ∈ K ′, and U for every tag #k′ ,

dependencies
⋃
k′∈K′{(k′, #k′), (#k′ , k′), (#k′ , #k′)}

output type : tags {o, #},
values K ′ × V ′ for the tag o, and U for every tag #,

dependencies {(o, #), (#, o), (#, #)}

The overall streaming map-reduce computation is given by a sequential compo-
sition with five stages:

partition� (‖k∈K mapk)� reshuffle� (‖k′∈K′ reducek′)� collect.

Example 37 (Time-Based Sliding Window). Suppose that the input is
a sequence of items of the form (v, t), where v is a value and t is a timestamp.
We assume additionally that the items arrive in increasing order of timestamps,
that is, in an input sequence (v1, t1) · · · (vn, tn) it holds that t1 ≤ · · · ≤ tn. We
want to compute a so-called moving aggregate: “compute every second the sum
of the values over the last 10 seconds”. This sliding-window computation can be
set up as a pipeline of three stages:

19

mark unit window

σ

Tσ = V × T

σ #

Tσ = V
T# = U

σ

Tσ = V

σ

Tσ = V

Fig. 7. Sliding window computation (Example 37).

1. Stage mark: Insert at the end of every second an end-of-second marker #.
2. Stage unit: Compute at every occurrence of a # marker the sum of the values

over the last second. The output of this state is a sequence of partial sums,
i.e. one value for each one-second interval.

3. Stage window: Compute with every new item the sum of the last 10 items.

The overall sliding window computation is expressed as: mark� unit� window.

4 Related Work

Synchronous Computation Models: The data-trace transduction model is a syn-
chronous model of computation as it implicitly relies on the synchrony hypothe-
sis: the time needed to process a single input item by the system is sufficiently
small so that it can respond by producing outputs before the next input item
arrives [6]. Data-trace transductions are a generalization of what is considered
by acyclic Kahn process networks [11], where the interface consists of a a finite
number of input and output channels. A process network consists of a collection
of processes, where each process is a sequential program that can read from the
input channels and write to the output channels. The input/output channels
are modeled as first-in first-out queues. A specialization of process networks is
the model of Synchronous Dataflow [14], where each process reads a fixed finite
number of items from the input queues and also emits a fixed finite number
of items as output. We accommodate a finite number of independent input or
output streams, but also allow more complicated independence relations on the
input and output, and in particular, viewing the input or output stream as a bag
of events is not possible in Kahn process networks. We do not consider any par-
ticular implementation for data-trace transductions in this paper, but dataflow
networks could be considered as a particular implementation for a subclass of
our interfaces.

Merging of multiple input and output channels: In our model, even stream pro-
cessing components with multiple input channels receive the items merged into a
linear order. Traditionally, this merging of two streams into one linearly ordered
stream has been considered a nondeterministic operation, and there is a body of
work investigating the semantics and properties of dataflow systems built from
such nondeterministic nodes. Brock and Ackerman [7] show that the relation

20

from inputs to possible outputs is not compositional, i.e. it is not an adequate
semantics for these systems. Panangaden et al [19] consider variants of nondeter-
ministic merge and their expressive power. Because we disallow these inherently
nondeterministic merge operations, our semantics is simple and compositional.
In particular the function from input histories to output histories is determin-
istic, and the nondeterminism of merge is hidden by expressing it only in the
types, in the independence relation. We also have not considered feedback in a
network defined by operations.

Partial order semantics for concurrency: The traditional model for asynchronous
systems is based on interleaving the steps of concurrent processes, and the ob-
servational semantics of an asynchronous system consists of a set of behaviors,
where a behavior is a (linear) sequence of interspersed input and output events
(see, for instance, the model of I/O automata [16]). Such a semantics does not
capture the distinction between coincidental ordering of observed events ver-
sus causality between them (see [13] for a discussion of causality in concurrent
systems). This motivated the development of a variety of models with partial
order semantics such as pomsets [20] and Mazurkiewicz traces [18]. We build
upon the ideas in this line of research though our context, namely, synchronous,
deterministic, streaming processors, is quite different.

Streaming extensions of database query languages: There is a large body of
work on streaming query languages and database systems such as Aurora [2],
Borealis [1], STREAM [5], and StreamInsight [3]. The query language supported
by these systems (for example, CQL [5]) is typically a version of SQL with
additional constructs for sliding windows over data streams. This allows for rich
relational queries, including set-aggregations (e.g. sum, maximum, minimum,
average, count) and joins over multiple data streams. A precise semantics for
how to merge events from different streams has been defined using the notion
of synchronization markers [15]. The pomset view central to the formalism of
data-trace transductions is strictly more general, and gives the ability to view
the stream in many different ways, for example: as a linearly ordered sequence,
as a relation, or even as a sequence of relations. This is useful for describing
streaming computations that combine relational operations with sequence-aware
operations. Extending relational query languages to pomsets has been studied
in [10], though not in the context of streaming.

5 Conclusion

We have proposed data-trace transductions as a mathematical model for spec-
ifying the observable behavior of a stream processing system. This allows con-
sumption of inputs and production of outputs in an incremental manner that is
suitable for streaming computation, while retaining the ability to view input and
output streams as partially ordered multisets. The basic operations of sequen-
tial composition and parallel composition can be defined naturally on data-trace

21

transductions. The examples illustrate that the flexibility of our model is useful
to specify the desired behavior of a wide variety of commonly used components
in stream processing systems.

Defining the interface model is only the first step towards a programming
system and supporting analysis tools that can help designers build stream pro-
cessing systems with formal guarantees of correctness and performance. An im-
mediate next step is to formalize a transducer model to define the computations
of data-trace transductions with a type system that enforces the consistency re-
quirement of Definition 17. Future directions include defining a declarative query
language to specify data-trace transductions (see [10] for operations over pomsets
and [4, 17] for specifying quantitative properties of linearly ordered streams), ef-
ficient implementation of data-trace transductions on existing high-performance
architectures for stream processing (such as Apache Storm), and techniques for
verifying correctness and performance properties of data-trace transductions.

References

1. D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.
The design of the Borealis stream processing engine. In Proceedings of the 2nd
Biennial Conference on Innovative Data Systems Research (CIDR), pages 277–
289, 2005.

2. D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data
stream management. The VLDB Journal, 12(2):120–139, 2003.

3. M. Ali, B. Chandramouli, J. Goldstein, and R. Schindlauer. The extensibility
framework in Microsoft StreamInsight. In Proceedings of the 27th IEEE Interna-
tional Conference on Data Engineering (ICDE), pages 1242–1253, 2011.

4. R. Alur, D. Fisman, and M. Raghothaman. Regular programming for quantita-
tive properties of data streams. In Programming Languages and Systems - 25th
European Symposium on Programming, LNCS 9632, pages 15–40, 2016.

5. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic
foundations and query execution. The VLDB Journal, 15(2):121–142, 2006.

6. A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Si-
mone. The synchronous languages 12 years later. Proceedings of the IEEE,
91(1):64–83, 2003.

7. J. D. Brock and W. B Ackerman. Scenarios: A model of non-determinate computa-
tion. In Formalization of programming concepts, International Colloquium, LNCS
107, pages 252–259, 1981.

8. L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual ACM Symposium on Foundations of Software Engineering (FSE), pages
109–120, 2001.

9. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clus-
ters. In Proceedings of the 6th Conference on Symposium on Operating Systems
Design & Implementation, OSDI ’04, pages 137–149. USENIX Association, 2004.

10. S. Grumbach and T. Milo. An algebra of pomsets. Information and Computation,
150:268–306, 1999.

22

11. G. Kahn. The semantics of a simple language for parallel programming. Informa-
tion Processing, 74:471–475, 1974.

12. S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. Patel,
K. Ramasamy, and S. Taneja. Twitter Heron: Stream processing at scale. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 239–250, 2015.

13. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21:558–565, 1978.

14. E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235–1245, 1987.

15. J. Li, D. Maier, K. Tufte, V. Papamidos, and P.A. Tucker. Semantics and evaluation
techniques for window aggregates in data streams. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 311–322, 2015.

16. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
17. K. Mamouras, M. Raghothaman, R. Alur, Z.G. Ives, and S. Khanna. StreamQRE:

Modular specification and efficient evaluation of quantitative queries over stream-
ing data. In Proc. 38th ACM SIGPLAN Conf. on Programming Language Design
and Implementation, pages 693–708, 2017.

18. A. Mazurkiewicz. Trace theory. In Advances in Petri nets: Proceedings of an
advanced course, LNCS 255, pages 279–324. Springer-Verlag, 1987.

19. P. Panangaden and V. Shanbhogue. The expressive power of indeterminate
dataflow primitives. Information and Computation, 98(1):99–131, 1992.

20. V.R. Pratt. Modeling concurrency with partial orders. International Journal of
Parallel Programming, 15(1), 1986.

23

