
On the Hoare Theory of Monadic Recursion Schemes

Konstantinos Mamouras
Cornell University

mamouras@cs.cornell.edu

Abstract
The equational theory of monadic recursion schemes is known
to be decidable by the result of Sénizergues on the decidability
of the problem of DPDA equivalence. In order to capture some
properties of the domain of computation, we augment equations
with certain hypotheses. This preserves the decidability of the the-
ory, which we call simple implicational theory. The asymptotically
fastest algorithm known for deciding the equational theory, and
also for deciding the simple implicational theory, has running time
that is non-elementary. We therefore consider a restriction of the
properties about schemes to check: instead of arbitrary equations
f ≡ g between schemes, we focus on propositional Hoare asser-
tions {p}f{q}, where f is a scheme and p, q are tests. Such Hoare
assertions have a straightforward encoding as equations. We inves-
tigate the Hoare theory of monadic recursion schemes, that is, the
set of valid implications whose conclusions are Hoare assertions
and whose premises are of a certain simple form. We present a
sound and complete Hoare-style calculus for this theory. We also
show that the Hoare theory can be decided in exponential time, and
that it is complete for this class.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Logics of programs; F.3.3 [Logics and Meanings of
Programs]: Studies of Program Constructs—Program and recur-
sion schemes

General Terms Theory, Verification, Languages

Keywords Hoare logic, propositional Hoare logic, monadic re-
cursion schemes, monadic program schemes, sound and complete
Hoare calculus

1. Introduction
The equivalence problem for pushdown automata (PDAs) is a stan-
dard undecidable problem. In fact, it is Π0

1-complete and there-
fore not even recursively enumerable. For a special subclass of
PDAs, called deterministic PDAs or DPDAs, the question of the
decidability of language-equivalence was posed in [9]. After re-
maining open for three decades, this question was settled posi-
tively by Sénizergues in [20] (journal version [21]). Simplified
proofs of this decidability result were presented later by Stirling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603157

[24] and Sénizergues [22]. Stirling has also obtained a primitive
recursive upper bound for the problem [25], but the proposed al-
gorithm witnessing this bound has worst-case running time that is
non-elementary. Recently, Jančar gave a simplified proof of the de-
cidability result for DPDA equivalence [11, 12]. Jančar’s proof re-
lies on the use of first-order terms and grammars.

DPDA equivalence is related to the problem of equivalence of
monadic recursive program schemes (also called monadic recur-
sion schemes). The atomic actions and predicates in such schemes
are uninterpreted, and hence completely abstract. The schemes
are called monadic because they only have one variable. In other
words, the entire state of the program is viewed as an indivisible
entity, as opposed to the case of being able to “see” various vari-
ables that can be set and read separately. The (strong) equivalence
problem for program schemes is checking whether two schemes de-
note the same partial function under every possible interpretation of
the atomic actions and predicates. Garland and Luckham showed
in [8] (page 132, Theorem 2.10, part (b)) that the equivalence of
monadic recursion schemes can be reduced to the equivalence prob-
lem for deterministic context-free grammars (these grammars cor-
respond to DPDAs). Moreover, Friedman showed in [7] the con-
verse, namely, that DPDA equivalence can be reduced to monadic
recursion scheme equivalence. So, by the results of Sénizergues
and Stirling, the equational theory of monadic recursion schemes
(the set of equations between such schemes that hold under every
interpretation) is decidable and, in fact, is a primitive recursive set.

The decidability of the equational theory of monadic recursion
schemes suggests that this formalism can offer a convenient level of
abstraction at which to reason about the control structure of recur-
sive deterministic programs. However, in order to use such schemes
for real programming applications, we need to reason under hy-
potheses that capture some properties of the domain of computa-
tion. For example, consider the following equivalent programs:

program 1 program 2
x := 1;
if (x ≥ 0) then y := 2 else y := 3

x := 1;
y := 2

The equivalence of the above programs hinges on a property of the
domain of computation (the integers) that can be expressed with
the Hoare assertion {true}x := 1{x ≥ 0}. This assertion is read
as follows: “after the execution of the statement x := 1, the test
x ≥ 0 holds”. However, for the monadic schematic abstractions

a; if p then b else c and a; b

of the above programs (where a, b, c are abstract atomic actions
replacing the statements x := 1, y := 2, and y := 3 respectively,
and p is an abstract atomic test replacing x ≥ 0) equivalence does
not hold. Now, reasoning under the hypothesis {true}a{p}, the
schemes a; if p then b else c and a; b can be shown to be equivalent.
This simple example suggests that it would be desirable to be able
to handle implications, e.g.

{true}a{p} ⇒ a; b ≡ a; if p then b else c,

in addition to just equations. If the hypotheses are allowed to
be arbitrary equations, the theory is rendered undecidable [19]
(see also [6]). So, we are led to consider here more restricted
hypotheses that are either Hoare assertions for atomic actions (that
is, statements of the form {p}a{q}), or propositional formulas
for tests. The set of valid implications Φ ⇒ f ≡ g, where Φ
is a collection of thus restricted hypotheses, is called the simple
implicational theory of monadic recursion schemes.

The best known algorithm for deciding DPDA equivalence, due
to Stirling [25], has non-elementary asymptotic running time. As
far as the inherent computational complexity of the problem is con-
cerned, no non-trivial lower bounds are known. The complexity gap
between the known P-hard lower bound and the primitive recursive
upper bound has motivated the study of further subclasses of DP-
DAs. Sénizergues shows in [23] that for every integer t ≥ 1, the
equivalence problem for t-turn DPDAs lies in coNP. In such DP-
DAs the number of switches between pushing to and popping from
the stack is bounded. Böhm, Göller, and Jančar study determin-
istic one-counter automata, which extend the standard DFAs with
a non-negative counter, and show that their equivalence problem
is NL-complete [2, 3]. An earlier result for deterministic real-time
one-counter automata was obtained in [1].

For the works mentioned in the previous paragraph, the decision
problem of scheme equivalence was shown to be easier by restrict-
ing the functionality of the stack of the DPDA. Intuitively, this can
be understood in the context of program schemes as restricting re-
cursion. In the present work we explore a different way of obtaining
an easier decision problem: we do not restrict recursion, but rather
we check a property that is simpler than equivalence. For an arbi-
trary monadic recursion scheme f , we check a property given by
the Hoare assertion {p}f{q}. This assertion expresses the same
property as the equation

⊥ ≡ if p then (f ; if q then⊥ else id) else⊥,

where⊥ is the program that always diverges, and id is the program
that does nothing. Thus, any Hoare assertion can be encoded as
an equation. Again, we want to allow hypotheses of the form
{p}a{q}, where a is an atomic action, and hypotheses that are
propositional formulas for tests. More formally, the properties we
consider are expressed by implications Φ⇒ {p}f{q}, where Φ is
a list of hypotheses. The set of such implications that are true under
any interpretation is called the Hoare theory of monadic recursion
schemes. This Hoare theory is the primary object of study for the
present paper.

At a technical level, our work is closely related to the line of
work on the propositional fragment of Hoare logic, called Proposi-
tional Hoare Logic or PHL. This logic was introduced by Kozen in
[16, 17], where it is shown to be subsumed by Kleene algebra with
tests (KAT) [15], a propositional Horn equational system that com-
bines Kleene algebra (KA) [13, 14] with Boolean algebra. More-
over, it is proved that PHL is PSPACE-complete (see also [5]) and
therefore as complex to decide as the more expressive KAT, which
is also PSPACE-complete. A deductive Hoare-style calculus for a
variant of PHL is presented in [18], which is sound and complete
for the set of relationally valid implications of the form

{p1}a1{q1}, . . . , {pk}ak{qk} ⇒ {p}f{q},

where a1, . . . , ak are atomic actions and f is an arbitrary regular
program (built using the operations of composition ;, nondetermin-
istic choice +, and nondeterministic iteration ∗). Contrary to the
present paper, both PHL and KAT are concerned with iteration and
do not handle arbitrary recursion.

We note that the result of [16, 17] on the subsumption of PHL by
KAT suggests that for practical reasoning purposes KAT offers an
expressiveness advantage over PHL with no complexity increase.

However, if we add a recursion operator to the language of KAT,
then arbitrary context-free languages can be expressed. This means
that the equational theory can have no recursive axiomatization and
no decision procedure. The increased complexity of such an equa-
tional theory that combines nondeterminism and recursion raises
the need for identification of more computationally manageable
fragments.

Related to both PHL and KAT is Propositional Dynamic Logic
(PDL), which is a modal logic for reasoning about regular pro-
grams. Standard PDL only concerns programs with iteration and
is already EXPTIME-complete. Extensions of PDL with recursive
programs can be highly complex. For example, its extension with
the context-free program {aibai | i ≥ 0} is Π1

1-complete. Much
more on the subject of non-regular PDL can be found in [10].

Our contribution. We investigate the simple implicational the-
ory and the Hoare theory of monadic recursion schemes. Our re-
sults are the following:

• We show that the simple implicational theory of monadic re-
cursion schemes is decidable and, in fact, primitive recursive. This
extends the known result about the decidability of the equational
theory.

• We give a sound and complete Hoare-style calculus for the
Hoare theory of monadic recursion schemes. We also obtain an
analogous result for monadic while schemes.

• A decision procedure is given for the Hoare theory that re-
quires exponential time. Moreover, it is shown that the Hoare the-
ory is EXPTIME-hard.

2. Preliminaries
Monadic recursion schemes can be given as a collection of equa-
tions, which are to be thought of as mutually recursive parameter-
less procedure declarations. For example,

X , if p then a;X;Y ; b else c

Y , if q then a else c;Y ;X; d

where p, q are abstract atomic tests and a, b, c, d are abstract atomic
actions. The procedure symbolX is designated as the start symbol.
Alternatively, such schemes can be given as terms that involve the
recursion operation µ. The µ operation binds program variables,
e.g. µX.if p then a;X; b corresponds to the recursive definition

X , if p then a;X; b.

There are straightforward translations from one formalism to the
other that only incur a polynomial blow-up in size. These transla-
tions are related to Bekić’s theorem (see Chapter 10 of [26] for an
elementary exposition).

2.1 The language of monadic program schemes
The language of monadic program schemes involves two sorts: the
sort of tests, and the sort of programs. Tests are built up from atomic
tests and the constants true and false, using the test operations ¬
(negation), ∧ (conjunction), and ∨ (disjunction). We typically use
the letters p, q, . . . to range over arbitrary tests. So, the tests are
given by the grammar

p, q ::= atomic test | true | false | ¬p | p ∧ q | p ∨ q.
As usual, the implication p → q is treated as abbreviation for
¬p ∨ q, and the double implication p ↔ q as abbreviation for
(p → q) ∧ (q → p). The base programs are atomic programs
a, b, . . . (also called atomic actions), program variables X,Y, . . .,
and the constants id and ⊥, called skip and fail respectively. Com-
pound programs are constructed using the operations ;, if, while,
and µ, called (sequential) composition, conditional, iteration, and
recursion respectively. For a test p, a program variable X , and ar-

bitrary programs f, g, the following are programs:

f ; g if p then f else g while p do f µX.f

For notational brevity, we will sometimes write p[f, g] instead of
if p then f else g, and wpf instead of while p do f .

2.2 Denotational semantics of programs
We present the standard denotational semantics of monadic pro-
gram schemes. Every program term is interpreted as a partial func-
tion on a set representing an abstract state space. Every test is in-
terpreted as a unary predicate on the state space.

Notation 1. Before we give the formal semantics of the language,
we present some relevant notation and definitions. We assume that a
partial function f : A ⇀ B from a setA to a setB is represented as
a binary relation {(x, f(x)) | x ∈ A, f(x) defined} ⊆ A×B. We
use the arrow⇀ instead of→ to indicate partiality. The domain of a
partial function f , denoted domf , is defined as domf = {x ∈ A |
f(x) defined}. If the partial functions f, g : A ⇀ B have disjoint
domains, then their union is a partial function f∪g : A ⇀ B. More
generally, if fi : A ⇀ B is an arbitrary family of partial functions
with pairwise disjoint domains domfi, then

⋃
i fi : A ⇀ B

is a well-defined partial function. We write IdA for the identity
relation (total function) on A, that is, IdA = {(x, x) | x ∈ A}.
The operation of composition of partial functions is written as ;
(boldface ;). The operands are given in diagrammatic order:

f : A ⇀ B g : B ⇀ C

f ; g : A ⇀ C
.

For partial functions f, g : A ⇀ B, we write f ≤ g when for
every x ∈ A with f(x) defined, it holds that g(x) is also defined
and is equal to f(x). The partial order ≤ is sometimes referred to
as the extension order on partial functions. For a partial function
f : A ⇀ A with f ≤ IdA we define its complement ∼f : A ⇀ A
as ∼f = IdA \ f . Finally, for a partial function h : A ⇀ A,
we define hn : A ⇀ A to be the n-fold composite of h. That
is, h0 = IdA and hn+1 = hn;h. A straightforward induction
establishes that hn+1 = h;hn for every n ≥ 0.

An interpretation of the language of monadic program schemes
consists of a setA, called the domain, and an interpretation function
I . Elements of the domainA are called states, and we use lowercase
letters x, y, . . . to range over them. We think ofA as being the state
space of the program. For a program f , its interpretation I(f) :
A ⇀ A is a partial function from A to A. For x ∈ A, if I(f)(x) is
undefined, then this is to be understood as divergence or failure of
the program when started at state x. The interpretation of a test p
is I(p) : A ⇀ A. Intuitively, I(p)(x) = x when p(x) is true, and
I(p)(x) is undefined when p(x) is false. Alternatively, I(p) can be
represented as a unary predicate onA, that is, as a subset ofA. The
interpretation function specifies the meaning I(a) : A ⇀ A and
I(p) : A ⇀ A for every atomic program a and every atomic test
p. Moreover, it specifies the meaning I(X) : A ⇀ A of (some of)
the program variables. Now, we describe how I extends to all tests
and programs. For tests:

I(true) = IdA I(¬p) = ∼I(p)

I(false) = ∅ I(p ∧ q) = I(p); I(q)

I(p ∨ q) = I(p) ∪ I(q)

For programs, we define I inductively as follows:

I(id) = IdA I(f ; g) = I(f); I(g)

I(⊥) = ∅ I(p[f, g]) = I(p); I(f) ∪ ∼I(p); I(g)

I(wpf) =
⋃
n≥0(I(p); I(f))n;∼I(p)

I(µX.f) =
⋃
n≥0 τn

where τ0 = ∅ and τn+1 = I[X 7→ τn](f). The notation I[X 7→
τn] denotes the function that agrees with I , except possibly for X
which is mapped to τn. Equivalently, I(µX.f) can be defined as
the least fixpoint of the monotone map σ 7→ I[X 7→ σ](f), for
σ : A ⇀ A.

Claim 2. I(wpf) =
⋃
n≥0 I(p[f, id])n;∼I(p).

Claim 3. Let X be a program variable not appearing free in the
program f . Then, I(wpf) = I(µX.p[f ;X, id]).

Claim 3 says that every while loop can be equivalently written
using recursion. So, for some of our results we do not need to
take while as a primitive operator. We have chosen to include it
as a primitive symbol, because we will present a complete Hoare
calculus for while program schemes, that is, schemes in which we
do not allow general recursion.

2.3 Formulas and their semantics
First, we consider the notions of satisfaction and validity for tests.
Let I be an interpretation of the language of programs. For a test p
and a state x, we write I, x |= p when I(p)(x) = x. We read: “the
state x satisfies p (under the interpretation I)”. When I, x |= p for
every state x, we say that I satisfies p and we write I |= p. Finally,
we say that p is valid when I |= p for every interpretation I , and
we write |= p.

An equation is an expression f ≡ g, where f and g are
programs. An interpretation I satisfies the equation f ≡ g, denoted
as I |= f ≡ g, if I(f) = I(g). An equation f ≡ g is valid, written
|= f ≡ g, when every interpretation satisfies it.

A Hoare assertion is an expression {p}f{q}, where p, q are
tests and f is a program. Informally, it says that when the program
starts at a state satisfying the predicate p and f terminates, then
the state after the execution of f satisfies the predicate q. This
intuition is formalized as follows: for all states x, y in the domain,
I, x |= p and I(f)(x) = y imply that I, y |= q. In this case we
write I |= {p}f{q} and say that I satisfies the Hoare assertion
{p}f{q}. We typically use letters φ, ψ, . . . to range over Hoare
assertions. A Hoare assertion is called simple if it is of the form
{p}a{q} or {p}X{q}, where a is an atomic action and X is a
program variable.

Remark 4. Directly from the definitions we get that I |= {p}f{q}
iff I(p); I(f);∼I(q) = ∅. Since I(p) = I(p[id,⊥]) and∼I(p) =
I(p[⊥, id]) for every test p, we observe that

I(p); I(f);∼I(q) = I(p[id,⊥]); I(f); I(q[⊥, id])

= I(p[id,⊥]; f ; q[⊥, id])

= I(p[f ; q[⊥, id],⊥]).

So, I |= {p}f{q} iff I |= p[f ; q[⊥, id],⊥] ≡ ⊥. This reduces the
satisfaction of a Hoare assertion to the satisfaction of an equation.

We use capital Greek letters Φ,Ψ, . . . to denote collections of
simple Hoare assertions and tests. We say that I satisfies such a
collection Φ, and write I |= Φ, if I satisfies every Hoare assertion
and every test in Φ. We are only concerned here with implications
of one of the following forms:

Φ⇒ f ≡ g Φ⇒ p Φ⇒ {p}f{q}

where Φ is a finite collection of simple Hoare assertions and tests,
p is a test, and {p}f{q} is an arbitrary Hoare assertion. We call
them simple implications. Implications of the two last forms in par-
ticular are called Hoare implications. An interpretation I satisfies
an implication Φ ⇒ φ, written I |= Φ ⇒ φ, if I |= Φ implies
that I |= φ. An implication Φ ⇒ φ is valid, which we denote by
|= Φ⇒ φ, if every interpretation satisfies it.

The set of valid equations f ≡ g between monadic recursive
schemes is the equational theory of such schemes. We denote this
set by EqTheory. The set SImpTheory of valid simple implications
Φ⇒ f ≡ g is the simple implicational theory of monadic recursive
schemes. Analogously, we call the set of valid Hoare implications
Φ⇒ p and Φ⇒ {p}f{q} the Hoare theory of monadic schemes.
We write this set as HoareTheory.

3. The simple implicational theory
We augment equations f ≡ g between schemes with hypotheses
Φ that are either tests or simple Hoare assertions {p}a{q}. The
main result of this section is that the validity of such an implication
Φ ⇒ f ≡ g can be reduced to the validity of a simple equation
f̃ ≡ g̃. The reduction can incur an exponential blow-up in size. The
idea of the proof is to replace each atomic action a by a program ã
that in some sense encodes the hypotheses Φ.

Suppose that Φ is a finite collection of tests and simple Hoare
assertions. We assume that we only have a finite number of atomic
tests p1, p2, . . . , pk available. For each i, take `i to be the literal pi
or ¬pi. We call the sequence `1`2 · · · `k an atom. We use lowercase
letters α, β, γ, . . . from the beginning of the Greek alphabet to
range over atoms. An atom is essentially a conjunction of literals,
and it can thought of as a propositional truth assignment. We write
α ≤ p or α |= p to mean that the atom α satisfies the test p. An
atom α is consistent with Φ or Φ-consistent if α |= p for every test
p ∈ Φ. Let Atc be the set of atoms that are consistent with Φ.

Remark 5. Let I be an interpretation just for the tests of the
language, Φ = {q1, . . . , qn} be a collection of tests, and Atc
be the corresponding set of Φ-consistent atoms. We observe that
I satisfies Φ iff I |=

∨
Atc. By Boolean logic, every test qi is

equivalent to a disjunction of atoms. That is, |= qi ↔ αi1 ∨ · · · ∨
αimi

. Let At ic = {αi1, . . . , αimi
} be the atoms satisfying qi. Then,

the set of Φ-consistent atoms is Atc =
⋂
iAt

i
c . It suffices to show

that
∧
i(α

i
1 ∨ · · · ∨ αimi

) is equivalent to
∨

Atc. Indeed,

|=
∧
i(α

i
1 ∨ · · · ∨ αimi

)↔
∧
i

[
(
∨

Atc) ∨
∨

(At ic \Atc)
]

↔ (
∨

Atc) ∨
∧
i

∨
(At ic \Atc),

which is equivalent to
∨

Atc. So, the disjunct
∨

Atc is the disjunc-
tive normal form of (and hence, equivalent to) the conjunction of
tests in Φ.

Definition 6 (the ·̃ transformation). Fix an atomic action a. For a
Φ-consistent atom α we define qα to be the conjunct

qα =
∧
{q | {p}a{q} ∈ Φ, α ≤ p}.

Intuitively, qα is the test that has to hold (according to Φ) after
executing the action a from a state satisfying the atom α. Define
now the program ã as the following case statement:

ã = if α then (a; if (qα ∧
∨

Atc) then id else⊥)

else if β then (a; if (qβ ∧
∨

Atc) then id else⊥)

else if . . .

else if γ then (a; if (qγ ∧
∨

Atc) then id else⊥)

else ⊥,

where the atoms α, β, . . . , γ in the statement are exactly the Φ-
consistent atoms. We will extend the ·̃ transformation now to arbi-
trary programs. First, define

ĩd = if (
∨

Atc) then id else⊥.

Define the substitution θ to map every atomic program a to ã, and
the constant id to ĩd. For a program f , we put f̃ = θ(f).

Lemma 7. Let I be an interpretation that satisfies Φ. Then, it holds
that I(ã) = I(a) for an atomic action a. In fact, I(f̃) = I(f) for
every program term f .

Let S ⊆ A and f : A ⇀ A be a partial function. We say that f
is S-restricted if both the domain and the range of f are contained
in S. This means that we can essentially view f as a partial function
of type f : S ⇀ S.

Lemma 8. Let I be an interpretation, and S be the subset of states
that satisfy

∨
Atc. We assume that for every program variable X ,

I(X) is S-restricted. Then, for every program term f , the partial
function I(f̃) is S-restricted.

Theorem 9. The implication Φ ⇒ f ≡ g is valid iff the equation
f̃ ≡ g̃ is valid.

Proof. For the right-to-left direction, suppose that the equation
f̃ ≡ g̃ is valid and consider an interpretation I that satisfies Φ.
We have that I |= f̃ ≡ g̃, that is, I(f̃) = I(g̃). We have to show
that I satisfies f ≡ g. This follows immediately from Lemma 7,
which says that I(f) = I(f̃) = I(g̃) = I(g).

For the left-to-right direction, suppose that Φ⇒ f ≡ g is valid
and consider an arbitrary interpretation I . We have to show that
I(f̃) = I(g̃). W.l.o.g. we can assume that the programs f and
g have no free program variables, and that no program variable
appears in Φ. Lemma 8 says that I(f̃) and I(g̃) remain essentially
unchanged if we restrict the domain to the states that satisfy

∨
Atc.

So, w.l.o.g. we can assume from now on that I(
∨

Atc) = Id , that
is, I satisfies all the tests in Φ. This means that I(ĩd) = I(id) = Id .
Now, we modify the interpretation so that every atomic action a is
mapped to the partial function I(ã). We thus define

I ′ = I[a 7→ I(ã), for all a].

The interpretation I ′ now satisfies Φ by construction of ã. Since
Φ ⇒ f ≡ g has been assumed to be valid, we get that I ′ satisfies
f ≡ g. That is, I ′(f) = I ′(g). By a straightforward “substitution
lemma” we have that

I ′(f) = I[a 7→ I(ã), for all a](f) = I(f̃)

and similarly that I ′(g) = I(g̃). It follows that I(f̃) = I(g̃). So,
the equation f̃ ≡ g̃ is valid.

Corollary 10. SImpTheory is decidable. In fact, it is a primitive
recursive set.

Proof. Theorem 9 essentially says that the simple implicational the-
ory SImpTheory of monadic recursion schemes can be reduced
to their equational theory EqTheory. The reduction produces an
equation of size exponential in the size of the implication. This is
because each atomic program a is replaced by a case statement ã
whose size is proportional to the number of atoms in Atc. Decid-
ability follows from the result of Sénizergues on the decidability
of the language-equivalence problem for DPDAs [20]. The prob-
lems of DPDA equivalence and (strong) equivalence of monadic
recursion schemes are interreducible, as shown in [8] and [7]. The
primitive recursive upper bound follows from the result of Stirling
[25], which is a strengthening of the decidability result for DPDA
equivalence.

4. A sound and complete Hoare calculus
In this section we propose a Hoare-style calculus (Table 1) which
is sound and complete for the Hoare theory of monadic recursion
schemes. The completeness proof is based on a standard technique
in logic: we define a “free” interpretation whose theory is exactly

{p}a{q} in Φ

Φ ` {p}a{q} Φ ` {p}id{p} Φ ` {true}⊥{false}

Φ ` {p}f{q} Φ ` {q}g{r}
Φ ` {p}f ; g{r}

Φ ` {p ∧ q}f{r} Φ ` {p ∧ ¬q}g{r}
Φ ` {p}if q then f else g{r}

Φ ` {p ∧ q}f{p}
Φ ` {p}while q do f{p ∧ ¬q}

Φ[X: {pj}X{qj} for j ∈ J] ` {pk}f{qk} for every k ∈ J
Φ ` {p`}µX.f{q`}

Φ ` p′ → p Φ ` {p}f{q} Φ ` q → q′

Φ ` {p′}f{q′}

Φ ` {p}f{q1} Φ ` {p}f{q2}
Φ ` {p}f{q1 ∧ q2} Φ ` {p}f{true}

Φ ` {p1}f{q} Φ ` {p2}f{q}
Φ ` {p1 ∨ p2}f{q} Φ ` {false}f{q}

Table 1. Proof system for deriving Hoare implications.

the set of valid Hoare implications. It is called “free” because it is
free of extra properties: if an implication is satisfied in it, then it is
satisfied in every interpretation.

We define a proof system in Table 1 with which we derive Hoare
implications. We use the notation Φ ` φ to mean that the Hoare
implication Φ⇒ φ is provable in our system. In the premise of the
µ-rule in Table 1 appears the notation

Φ[X : {pj}X{qj} for j ∈ J],

which denotes the set that results from Φ by replacing any Hoare
assertions for X by the assertions {pj}X{qj} for j ∈ J . The
index set J is always assumed to be finite. We assume that we
have a complete calculus for Boolean logic. So, Φ |= p implies
that Φ⇒ p is provable, where p is a test.

Proposition 11. The Hoare-style calculus of Table 1 is sound.

Proof. Verifying that the rules in Table 1 are sound is completely
standard, except possibly for the µ-rule. So, we will only give the
proof for the soundness of the µ-rule. Let Ψ denote the collection
of Hoare assertions

Φ[X : {pj}X{qj} for j ∈ J].

Suppose that Ψ |= {pk}f{qk} for every k ∈ J . We show that

Φ |= {p`}µX.f{q`}

for an arbitrary ` ∈ J . Let I be an interpretation for which I |= Φ.
We have to show that I |= {p`}µX.f{q`}.

Recall that I(µX.f) =
⋃
n≥0 τn, where τ0 = ∅ and τn+1 =

I[X 7→ τn](f). We claim that

I(pk); τn;∼I(qk) = ∅ for every k ∈ J and n ≥ 0.

The proof is by induction on n. For the base case, it clearly holds
that I(pk); τ0;∼I(qk) = ∅ because τ0 = ∅. For the induction step
assume that I(pk); τn;∼I(qk) = ∅ for every k ∈ J . Since I |= Φ,
I satisfies all the Hoare assertions in Ψ that do not involveX . Now,

notice that for every k ∈ J :

I(pk); τn;∼I(qk) = ∅ ⇐⇒
I(pk); I[X 7→ τn](X);∼I(qk) = ∅ ⇐⇒
I[X 7→ τn] |= {pk}X{qk}.

It follows that I[X 7→ τn] |= Ψ, and therefore I[X 7→ τn] |=
{pk}f{qk} for every k ∈ J . So, for every k ∈ J :

I[X 7→ τn] |= {pk}f{qk} ⇐⇒
I(pk); I[X 7→ τn](f); I(qk) = ∅ ⇐⇒
I(pk); τn+1;∼I(qk) = ∅.

Using the claim we have just proved we can show that

I(p`); I(µX.f); I(q`) = I(p`);
(⋃

n≥0 τn
)
; I(q`)

=
⋃
n≥0 I(p`); τn; I(q`) = ∅.

It follows that I |= {p`}µX.f{q`}, and we are done.

Let us give some intuition for the crucial rule for recursion. It
can be thought of as corresponding to a proof by induction, where
the claim is multi-part. For the induction step, we argue under the
hypotheses Φ augmented with the induction hypothesis: for every
j in the finite set J , it holds that {pj}X{qj}. We show that every
part of the claim is preserved:

Φ[X : {pj}X{qj} for j ∈ J] ` {pk}f{qk},

for every k ∈ J . We thus conclude that every part of the claim is
satisfied by the recursive procedure µX.f (under the hypotheses
Φ). That is, Φ ` {p`}µX.f{q`} for every ` ∈ J .

4.1 Free interpretation
Consider a finite collection Φ of tests and simple Hoare assertions.
We will see how to construct an interpretation IΦ, which depends
on Φ, that satisfies the following properties:

(1) IΦ satisfies every test and assertion in Φ.

(2) For a test q, if IΦ |= q then Φ ` q.

(3) For a Hoare assertion φ, if IΦ |= φ then Φ ` φ.

The existence of such an interpretation, which we call a free in-
terpretation, has as an easy consequence the completeness of the
calculus given in Table 1, as we will see later.

Remark 12. For showing the existence of a free interpretation, we
can assume without loss of generality that the Hoare assertions in Φ
are of the form {α}a{q} or {α}X{q}, where α is a Φ-consistent
atom.

Definition 13 (free interpretation). Fix a finite collection Φ of tests
and simple Hoare assertions, that is, assertions of the form {p}a{q}
or {p}X{q}. We define the domain AΦ of the free interpretation
for Φ to be the set At+

c of all finite non-empty strings over the set
Atc of Φ-consistent atoms. Intuitively, a state α1α2 . . . αn gives us
the atom currently satisfied (α1), as well as the atoms that will be
true after each execution of an atomic action. When the string is
a single atom, the computation is expected to terminate. Since the
first atom of a state is meant to indicate the currently satisfied atom,
we interpret an atomic test as follows:

IΦ(p)(αx) =

{
αx, if α ≤ p;
undefined, if α ≤ ¬p.

We need to consider now the interpretation of the atomic actions
and of the program variables. The Hoare assumptions in Φ restrict

the atoms that are reachable via an action a or X . For Φ-consistent
atoms α, β and for an atomic program a, define:

α
a−→Φ β iff β ≤ q, for all {α}a{q} ∈ Φ.

So, α a−→Φ β means that β can be reached from α via a under the
restriction that the assumptions Φ are satisfied. So, for an atomic
program a we define:

IΦ(a)(αβx) =

{
βx, if α a−→Φ β

undefined, otherwise

and IΦ(a)(α) is undefined (because a single-atom state α signi-
fies that the computation should have terminated). For a program
variable X , we define α X−→Φ β and IΦ(X) analogously.

Lemma 14. The free interpretation IΦ satisfies Φ.

4.2 Atoms reachable via programs
Already in the definition of the interpretation of an atomic action in
IΦ we introduced the notion of an atom β being reachable from an
atom α via the program a, and we denoted this by α a−→Φ β. This
is meant to correspond to the idea that a state satisfying α can be
transformed to a state satisfying β when the action a is executed.
We will extend the notion of reachable atoms to arbitrary programs.
For every program f , we will define inductively a function psΦ(f) :
Atc → ℘Atc, where ℘ denotes the powerset operation. The map
psΦ(f) sends an atom α to the set psΦ(f)(α) of atoms that are
reachable via f .

Notation 15. For functions of type Atc → ℘Atc, we define a bi-
nary sum operation + and a corresponding arbitrary sum operation∑

as follows:
σ : Atc → ℘Atc τ : Atc → ℘Atc

σ + τ := λα ∈ Atc. σ(α) ∪ τ(α) : Atc → ℘Atc

σj : Atc → ℘Atc j ∈ J∑
j σj := λα ∈ Atc.

⋃
j∈J σj(α) : Atc → ℘Atc

We also consider a composition operation ; given by

σ : Atc → ℘Atc τ : Atc → ℘Atc

σ; τ := λα ∈ Atc.
⋃
β∈σ(α) τ(β) : Atc → ℘Atc

.

The operation ; is associative with left and right unit the function
α 7→ {α}. The operation + is associative, commutative, and
idempotent. The unit for + is the function α 7→ ∅. We have left
and right distributivity of ; over +:

σ; (τ1 + τ2) = σ; τ1 + σ; τ2

(σ1 + σ2); τ = σ1; τ + σ2; τ

In fact, stronger distributivity properties hold: σ;
∑
j τj =

∑
j σ; τj

and (
∑
j σj); τ =

∑
j σj; τ . For a function σ : Atc → ℘Atc we

define σn to be the n-fold composite of σ. That is, σ0 = ps(id)
and σn+1 = σn;σ. It holds that σn+1 = σ;σn for every n ≥ 0.
We define a partial order on functions of type Atc → ℘Atc by:
σ ≤ τ iff σ + τ = τ . Observe that σ ≤ τ iff σ(α) ⊆ τ(α) for
every α ∈ Atc.

Notation 16. Let Φ be a finite collection of tests and simple Hoare
assertions (of the form {p}a{q} or {p}X{q}). Fix a program
variable X and a function σ : Atc → ℘Atc. We denote by
Φ[X : σ] the set that results from Φ by removing all assertions
involving X and replacing them by assertions that agree with σ.
That is, we put the assertions {α}X{

∨
σ(α)} for every α ∈ Atc.

From Definition 13 we see that α X−→Φ[X:σ] β iff β ∈ σ(α) for
every α, β ∈ Atc. So, the free interpretation IΦ[X:σ] is equal to the

modified free interpretation IΦ[X : σ̃], where σ̃ : At+
c ⇀ At+

c is
defined as follows:

σ̃(αβx) =

{
βx, if β ∈ σ(α)

undefined, otherwise

and σ̃(X)(α) is undefined for every α ∈ Atc. Also, notice that
psΦ[X:σ](X) = σ.

Definition 17. For an arbitrary test q, we define the function
psΦ(q) : Atc → ℘Atc by psΦ(q)(α) = {α} when α ≤ q, and
psΦ(q)(α) = ∅ when α ≤ ¬q. Now, we define psΦ(f) : Atc →
℘Atc by induction on the structure of the program:

psΦ(id)(α) = {α} psΦ(a)(α) = {β | α a−→Φ β}

psΦ(⊥)(α) = ∅ psΦ(X)(α) = {β | α X−→Φ β}

psΦ(f ; g) = psΦ(f); psΦ(g)

psΦ(p[f, g]) = psΦ(p); psΦ(f) + psΦ(¬p); psΦ(g)

psΦ(wpf) =
∑
n≥0(psΦ(p); psΦ(f))n; psΦ(¬p)

psΦ(µX.f) =
∑
n≥0 σn

where σ0 = λα.∅ and σn+1 = psΦ[X:σn](f). To extend the nota-
tion we have been using for atomic actions to arbitrary programs,
we write α

f−→Φ β when psΦ(f)(α) = β.

Observation 18. Immediately from unfolding the definition of
psΦ(f ; g) and psΦ(p[f, g]) we obtain that:

psΦ(f ; g)(α) =
⋃
β∈psΦ(f)(α) psΦ(g)(β)

psΦ(p[f, g])(α) =

{
psΦ(f)(α), if α ≤ p
psΦ(g)(α), if α ≤ ¬p

The first of the above equations says that α
f−→Φ β

g−→Φ γ

implies α
f ;g−−→Φ γ. The second equation says that if α ≤ p and

α
f−→Φ β, then α

p[f,g]−−−→Φ β. Similarly, if α ≤ ¬p and α
g−→Φ β,

then we have α
p[f,g]−−−→Φ β.

Claim 19. The following equations hold:

ps(p[f, id])n; ps(¬p) =
∑

0≤i≤n(ps(p); ps(f))i; ps(¬p)
ps(wpf) =

∑
n≥0 ps(p[f, id])n; ps(¬p)

We have dropped the Φ subscripts to reduce notational clutter.

Claim 20. Let X be a program variable not appearing free in the
program f . Then, psΦ(wpf) = psΦ(µX.p[f ;X, id]).

Lemma 21 (monotonicity). Let σi, τi : Atc → ℘Atc be a finite
collection of pairs of functions. If σi ≤ τi for every i, then
psΦ[Xi:σi]

(f) ≤ psΦ[Xi:τi]
(f).

A consequence of the monotonicity property above is that the
approximants {σn | n ≥ 0} for psΦ(µX.f) =

⋃
n≥0 σn form a

countable chain σ0 ≤ σ1 ≤ σ2 ≤ · · · . The claim is that σn ≤
σn+1 for every n ≥ 0. The base case σ0 = λα.∅ ≤ σ1 is obvious.
For the induction step we need to show that σn+1 ≤ σn+2, which is
equivalent to the inequality psΦ[X:σn](f) ≤ psΦ[X:σn+1](f). But
this is a consequence of the induction hypothesis σn ≤ σn+1 and
of Lemma 21.

Lemma 22 (continuity). Let σ0 ≤ σ1 ≤ · · · be a countably
infinite chain of functions Atc → ℘Atc, and τ =

∑
n≥0 σn. Then,

psΦ[X:τ](f) =
∑
n≥0 psΦ[X:σn](f).

Proposition 23. For any Φ-consistent atom α and any program f ,
it holds that Φ ` {α}f{

∨
psΦ(f)(α)}.

Proof. We note that the Hoare assertion is well-formed, because the
set of atoms psΦ(f)(α) is finite. The proof proceeds by induction
on the structure of the program. For the skip program we have
that Φ ` {α}id{α} (axiom of the system) and

∨
psΦ(id)(α) =∨

{α} = α. For the fail program, we have the derivation

Φ ` α→ true Φ ` {true}⊥{false}
Φ ` {α}⊥{false}

and
∨

psΦ(⊥)(α) =
∨
∅ = false. For an atomic program a, we

recall that psΦ(a)(α) = {β | α a−→ β}, which is equal to

{β ∈ Atc | β ≤ q for all {α}a{q} ∈ Φ}.
Notice that Φ |=

∨
psΦ(a)(α) ↔

∧
{α}a{q}∈Φ q. Using the and-

rule, we get the derivation

Φ ` {α}a{q}, where {α}a{q} ∈ Φ

Φ ` {α}a{
∧
{α}a{q}∈Φ q}

,

and the weakening rule gives us Φ ` {α}a{
∨

psΦ(a)(α)}. We
have thus covered all the base cases.

We consider now the case of the composite f ; g. The in-
duction hypothesis gives us that Φ ` {α}f{

∨
psΦ(f)(α)}.

For every atom β in psΦ(f)(α), we have from the I.H. that
Φ ` {β}g{

∨
psΦ(g)(β)}, and therefore

Φ ` {β}g{
∨
β∈psΦ(f)(α)

∨
psΦ(g)(β)}

by the weakening rule. We observe that

|=
∨
β∈psΦ(f)(α)

∨
psΦ(g)(β)↔

∨⋃
β∈psΦ(f)(α) psΦ(g)(β)

↔
∨

psΦ(f ; g)(α),

and consequently the or-rule gives us that

Φ ` {
∨

psΦ(f)(α)}g{
∨

psΦ(f ; g)(α)}.
Now, we use the composition rule, and we obtain that Φ `
{α}f ; g{

∨
psΦ(f ; g)(α)}.

We handle now the case of the conditional p[f, g]. Suppose that
α ≤ p. We want to show that

Φ ` {α}p[f, g]{
∨

psΦ(p[f, g])(α)}.
Since α ≤ p, we have that psΦ(p[f, g])(α) = psΦ(f)(α). Using
the induction hypothesis and the fact that |= α ∧ p ↔ α we have
the derivation

Φ ` α ∧ p→ α Φ ` {α}f{
∨

psΦ(f)(α)}
Φ ` {α ∧ p}f{

∨
psΦ(f)(α)}

.

Moreover, we have that |= α ∧ ¬p ↔ false, which gives us the
derivation

Φ ` α ∧ ¬p→ false Φ ` {false}g{
∨

psΦ(f)(α)}
Φ ` {α ∧ ¬p}g{

∨
psΦ(f)(α)}

.

Now, using the rule for conditionals we conclude that Φ `
{α}p[f, g]{

∨
psΦ(f)(α)}. The case of α ≤ ¬p is handled simi-

larly and we omit it.
We handle the case of a loop wpf . Intuitively, the idea is to

consider the set of all atoms that appear during the execution of
the loop as the loop invariant. From Claim 19 and the distributivity
property we see that

psΦ(wpf) =
(∑

n≥0 psΦ(p[f, id])n︸ ︷︷ ︸
τ : Atc → ℘Atc

)
; psΦ(¬p).

Let α ∈ Atc. We take the disjunction of the set of atoms τ(α) to
be the loop invariant. So, we want to show that Φ ` {r ∧ p}f{r},
where r =

∨
τ(α). Consider an atom β ∈ τ(α) with β ≤ p.

There exists n ≥ 0 with β ∈ ps(p[f, id])n(α). By the I.H.,

Φ ` {β}f{
∨

ps(f)(β)}. Now, we claim that ps(f)(β) ⊆ τ(α)
and therefore the implication

∨
ps(f)(β) → r is valid. Since

β ≤ p, we have that ps(f)(β) = ps(p[f, id])(β). So,

ps(f)(β) = ps(p[f, id])(β)

⊆
⋃
β′∈ps(p[f,id])n(α) ps(p[f, id])(β′)

= (ps(p[f, id])n; ps(p[f, id]))(α)

= ps(p[f, id])n+1(α),

which is contained in τ(α). The weakening rule gives us that
Φ ` {β}f{r}. Since we have considered any Φ-consistent atom
β ≤ r ∧ p, by the or-rule, we get that

Φ ` {
∨
β≤r∧p, β∈Atc

β}f{r}.

From Φ |= r ∧ p↔
∨
{β ∈ Atc | β ≤ r ∧ p} and the weakening

rule, we have Φ ` {r ∧ p}f{r}. By the iteration rule,

Φ ` {r}wpf{r ∧ ¬p}.
From the expression that is given in Claim 19 for ps(wpf) we
obtain the validities

|=
∨

ps(wpf)(α)↔ (
∨
τ(α)) ∧ ¬p↔ r ∧ ¬p,

and hence Φ ` {r}wpf{
∨

ps(wpf)(α)}. Finally, from α ∈ τ(α)
we have that α → r is valid. The weakening rule then gives us
Φ ` {α}wpf{

∨
ps(wpf)(α)}.

It remains to consider the case µX.f of recursion. Let γ be
an arbitrary Φ-consistent atom, and τ = psΦ(µX.f). We want to
show that Φ ` {γ}µX.f{

∨
τ(γ)}. By the µ-rule it suffices to

prove that Ψ ` {β}f{
∨
τ(β)} for every β ∈ Atc, where

Ψ = Φ[X : τ] = Φ[X : {α}X{
∨
τ(α)} for α ∈ Atc].

Recall that τ =
⋃
n≥0 σn, where σ0 = λα.∅ and σn+1 =

psΦ[X:σn](f). From Lemma 22 we obtain that

psΨ(f) = psΦ[X:τ](f) =
∑
n≥0 psΦ[X:σn](f)

=
∑
n≥0 σn+1 = τ.

So, the induction hypothesis gives us that Ψ ` {β}f{
∨
τ(β)}, and

the proof is complete.

4.3 Strongest postconditions & completeness
Let p be a test, f be a program, and I be an interpretation. We
define postI(p, f) to be the set of states that can be reached via f
from a state satisfying p. That is,

postI(p, f) = {I(f)(x) | I(f)(x) defined, I, x |= p}.
It is straightforward to show the equivalence: I |= {p}f{q} iff
postI(p, f) ⊆ {y | I, y |= q}. For the particular case where we
consider a free interpretation IΦ and p is a Φ-consistent atom α, we
have that

postΦ(α, f) = {IΦ(f)(αx) | x ∈ At∗},
where we have omitted for the sake of brevity the condition that
IΦ(f)(αx) has to be defined. For notational convenience, we write
postΦ instead of postIΦ . Recall that the set psΦ(f)(α) contains
the Φ-consistent atoms that are reachable from α via f . The set
postΦ(α, f) contains the states reachable via f from a state satisfy-
ing α. These sets are related in a useful way. The exact relationship
between them is given by Proposition 26 and Claim 25.

Definition 24. Let Φ be a collection of tests and simple Hoare
assertions, and I be an interpretation with domain AΦ = At+

c . We
say that I is consistent with Φ if the following hold:

(1) For every atomic test p and every atom α ∈ Atc, it holds that
I(p)(αx) = αx iff α ≤ p.

(2) For every atomic program a and every atom α ∈ Atc, the
equation postI(α, a) = psΦ(a)(α) ·At∗c holds.

(3) For every program variable X and every atom α ∈ Atc, the
equation postI(α,X) = psΦ(X)(α) ·At∗c holds.

Claim 25. Let Φ be a collection of tests and simple Hoare asser-
tions. The free interpretation IΦ is consistent with Φ.

Proposition 26. Let Φ be a finite collection of tests and simple
Hoare assertions, and I be an interpretation that is consistent with
Φ. For every program f and every atom α ∈ Atc we have that
postI(α, f) = psΦ(f)(α) ·At∗c .

Theorem 27 (completeness). Let Φ be a finite collection of tests
and simple Hoare assertions, and {p}f{q} be a Hoare assertion.
The following are equivalent:

(1) Φ |= {p}f{q}.
(2) IΦ |= {p}f{q}.
(3) psΦ(f)(α) ⊆ {β ∈ Atc | β ≤ q} for every atom α ∈ Atc

with α ≤ p.
(4) Φ ` {p}f{q}.

Proof. We need only consider the atomic tests p1, p2, . . ., pk that
appear in Φ and {p}f{q}. So, only finitely many atomic tests are
relevant.

We show (1) ⇒ (2). Let IΦ be the free interpretation for Φ.
Since IΦ satisfies Φ (Lemma 14) and Φ |= {p}f{q} (by our
hypothesis), we have that IΦ |= {p}f{q}.

We show (2) ⇒ (3). Using Proposition 26 and Claim 25, it is
easy to see that for every atom α ∈ Atc with α ≤ p, IΦ |=
{α}f{q} is equivalent to:

postΦ(α, f) ⊆ {βy ∈ At+
c | IΦ, βy |= q} ⇐⇒

psΦ(f)(α) ·At∗c ⊆ {β ∈ Atc | β ≤ q} ·At∗c ⇐⇒
psΦ(f)(α) ⊆ {β ∈ Atc | β ≤ q}.

The implication (2)⇒ (3) follows immediately.
We show (3) ⇒ (4). By construction of IΦ, we know that

IΦ |= q ↔
∨
{β ∈ Atc | β ≤ q}. So, the inclusion

psΦ(f)(α) ⊆ {β ∈ Atc | β ≤ q}

is equivalent to IΦ |=
∨

ps(f)(α) → q. By the assumed com-
pleteness of the Boolean calculus included in `, this in turn is
equivalent to Φ `

∨
ps(f)(α) → q. Intuitively, we have seen

by now that the function psΦ(f) gives us strongest postcondi-
tions for the program f in the free interpretation. Suppose now
that IΦ |= {p}f{q}. Let α be a Φ-consistent atom with α ≤ p.
We have that IΦ |= {α}f{q}. From the previous discussion, we
have that Φ `

∨
ps(f)(α) → q. From Proposition 23 we have

that Φ ` {α}f{
∨

ps(f)(α)}. Using the weakening axiom, we get
Φ ` {α}f{q}. Now, we make use of the or-rule:

Φ ` {α}f{q}, for all α ∈ Atc with α ≤ p
Φ ` {

∨
{α ∈ Atc | α ≤ p}}f{q}

.

But IΦ |= p ↔
∨
{α ∈ Atc | α ≤ p}, and we thus conclude that

Φ ` {p}f{q}.
Finally, the implication (4)⇒ (1) is the soundness of our Hoare

calculus (Proposition 11).

The implications (2) ⇒ (3) ⇒ (4) shown in Theorem 27 and
Lemma 14 (together with the assumed complete Boolean calculus
included in `) say that the free interpretation IΦ indeed satisfies
the three desirable properties that we stated in the beginning of
Section 4.1. We easily obtain completeness of the suggested Hoare-
style calculus by showing the implication (1)⇒ (2) in Theorem 27.

Theorem 28 (completeness for while schemes). Consider the re-
striction of the language of monadic schemes to while programs,
that is, recursion µ and program variables do not appear. The Hoare
calculus of Table 1 (with the µ-rule removed) is complete for the
Hoare theory of these schemes.

Proof. We simply observe that everything goes through with essen-
tially no change when arbitrary recursion is removed and iteration
is retained.

We note that Theorem 28 is related to but does not follow from
the completeness result of Kozen and Tiuryn [18] for the Proposi-
tional Hoare Logic of regular programs. First, we consider here a
different language with no non-determinism. Additionally, our se-
mantics is deterministic, whereas in [18] interpretations are allowed
to be arbitrary relations. Showing completeness for a smaller class
of interpretations is, of course, a stronger result.

5. Complexity of the Hoare theory
We investigate the computational complexity of the problem
µHOARE: “Given a finite set Φ of tests and simple Hoare assertions
and a Hoare assertion {p}f{q}, is it the case that Φ |= {p}f{q}?”

Theorem 29. The problem µHOARE is in EXPTIME.

Proof. Since Φ |= {p}f{q} is equivalent to Φ |= {α}f{q} for
every atom α ∈ Atc with α ≤ p, we can restrict attention to Hoare
consequences of the form {α}f{q}.

As we showed in Theorem 27, the statement Φ |= {α}f{q},
where α is an atom in Atc, is equivalent to the containment

psΦ(f)(α) ⊆ {β ∈ Atc | β ≤ q}.
Recall that psΦ(f)(α) is the set of atoms that are reachable from
α via f (Definition 17). So, the problem amounts to computing the
function psΦ(f) : Atc → ℘Atc for arbitrary programs f (where
℘ denotes the powerset operation). We will give a procedure for
computing an explicit representation of psΦ(f).

Let k be the number of atomic tests that appear in the input
Φ, {p}f{q}. The size N of the set Atc of Φ-consistent atoms is
bounded above by 2k (the number of all atoms). Given an arbitrary
atom α, we can decide in linear time whether α is Φ-consistent,
because we simply check if α satisfies all the tests in Φ. Notice that
we can represent a function Atc → ℘Atc as a Atc×Atc matrix with
entries 0 or 1. With this representation the operation ; corresponds
to matrix multiplication. Such a multiplication takes time O(N3).
We define the “if” operation for a test p and matrices σ, τ as:

p[σ, τ]αβ =

{
σαβ , if α ≤ p
ταβ , if α ≤ ¬p

Computing p[σ, τ] takes time O(N2).
We give a recursive algorithm PS(g, {σa}a, {σX}X) that takes

as input a program g, a finite collection {σa}a of matrices for
all the atomic programs, and a finite collection {σX}X of matri-
ces for all the program variables. We use σ̄ as an abbreviation for
{σa}a, {σX}X . For most of the cases, the algorithm can be de-
scribed with simple equations:

PS(b, σ̄) , σb PS(id, σ̄) , 1Atc

PS(Y, σ̄) , σY PS(⊥, σ̄) , 0Atc

PS(g;h, σ̄) , PS(g, σ̄);PS(h, σ̄)

PS(p[g, h], σ̄) , p[PS(g, σ̄),PS(h, σ̄)]

where 0Atc is the matrix with 0’s everywhere, and 1Atc has 1’s on
the diagonal and 0’s elsewhere. We describe the case µY.g in a

PS(µY.g, σ̄) , {
S := 0Atc

for t = 1, . . . , N ·N do

newS := PS(g, σ̄[Y 7→ S])

S := newS

return S
}

Figure 1. Definition of the recursive procedure PS(f, σ̄) for the
case f = µY.g.

more operational way in Figure 1. By σ̄[Y 7→ S] we denote the
modification of σ̄ that maps Y to the matrix S. It is straightforward
to see that

PS(f, σ̄) = psΦ(f),

where σa = psΦ(a) and σX = psΦ(X). In the case of recursion
we just need to observe that a matrix hasN ·N entries and therefore
the fixpoint psΦ(µY.g) is reached within N ·N iterations.

We calculate an exponential upper bound for the running time
of the recursive algorithm. We think of the tree of recursive calls.
Let n be the size of the program g. At every recursive call the size
of the program reduces strictly. So, the depth of the tree is bounded
above by n. As far as branching of the tree is concerned, the worst
case is when we have recursion. The branching in that case is
N · N . The time needed to combine the results of the recursive
subtrees is O(N3) (worst case when we have multiplication). So,
we have an asymptotic upper bound N3 · (N ·N)n for the running
time of the algorithm. Since N ≤ 2k, we have a less tight bound
(2k)3 · (2k · 2k)n = 23k+2kn, which is exponential in the size of
the input. Calculating the initial values for σ̄ from Φ can clearly be
done in exponential time.

Theorem 30. The problem µHOARE is EXPTIME-hard.

Proof. We show how to encode the computations of polynomial-
space bounded alternating Turing machines [4]. Consider a ma-
chine with states Q = Qand ∪ Qor (partitioned into and-states &
or-states), input alphabet Σ, tape alphabet Γ, blank symbol , start
state q0, and transition relation

∆ ⊆ (Q× Γ)× (Q× Γ× {−1, 0,+1}).
A transition 〈(q, a), (q′, b, d)〉 ∈ ∆ says that if the machine is in
state q and is scanning the symbol a, then it spawns a new process
with its own copy of the tape in which the state is set to q′, the
symbol b is written over the current position, and the cursor moves
by d. If d = −1 (d = +1) the cursor moves one position to the
left (right), and if d = 0 the cursor stays in the same position. The
machine accepts (rejects) if it halts at an and-state (or-state).

The idea is to simulate the alternating machine with a recursive
program, where recursive calls correspond to the existential and
universal branching of the machine. After every recursive call the
tape is restored to exactly what it was before the call. In this way we
simulate parallel branching in which each process has its own copy
of the tape. Without loss of generality we can assume that every
computation path halts.

We introduce atomic tests P ai for every tape symbol a and every
position i. Intuitively, P ai is true when the tape has symbol a at
position i. The tests∧

i

∨
a P

a
i and

∧
i

∧
a6=b ¬(P ai ∧ P bj)

say that every position is associated with a unique symbol. The
atomic test A is used for returning the result of each recursive call.
The test A is true iff the machine accepts. We introduce program
variables X[q, i] for every state q and every position i. We think

Y [q, i, a] , write b1 at i; // write b1 at current position
X[q1, i+ d1]; // spawn first child process
write a at i; // restore tape
if A then { // first process accepted

write b2 at i; // write b2 at current position
X[q2, i+ d2]; // spawn second child process
write a at i; // restore tape
// result = A

} else { // first process rejected
id // propagate failure upwards

}
Figure 2. Encoding universal branching with recursive calls.

of X[q, i] as the procedure corresponding to the machine being
in state q and at position i. Similarly, we introduce the variables
Y [q, i, a], where q, i have the same interpretation as before and a
corresponds to the currently scanned symbol. So, we define X[q, i]
as a case statement that invokes the appropriate Y [q, i, a]:

X[q, i] , if P ai then Y [q, i, a]

else if P bi then Y [q, i, b]

else . . .

We introduce atomic programs accept and reject that set the test
A to true and false respectively. Moreover, they leave all other tests
unchanged. So, we take the assumptions

{true}accept{A} {true}reject{¬A}
{P ai }accept{P ai } {P ai }reject{P ai }

where i ranges over all positions and a over all tape symbols.
Now, if (q, a) has no ∆-successor and q is an and-state we define
Y [q, i, a] , accept. Similarly, if (q, a) has no ∆-successor and q
is an or-state we define Y [q, i, a] , reject. Suppose that q is an
and-state and that (q, a) has exactly two ∆-successors:

(q, a)∆(q1, b1, d1) and (q, a)∆(q2, b2, d2).

We define the procedure Y [q, i, a] as shown in Figure 2. If q is an
or-state with (q, a) having exactly two ∆-successors (q1, b1, d1)
and (q2, b2, d2), the procedure Y [q, i, a] is defined analogously
(see Figure 3). The generalization to more than two ∆-successors
is straightforward. The atomic program ‘write b at i’ writes the
symbol b at the position i of the tape and leaves everything else
unchanged. We can express this with the following assumptions:

{true}write b at i{P bi }
{P ai }write b at i{P ai } (for all a 6= b)

{A}write b at i{A}
{¬A}write b at i{¬A}

For input string x1x2 · · ·xn we define the test start , which en-
codes the initial tape, as

start =P x1
1 ∧ · · · ∧ P

xn
n ∧ Pn+1 ∧ · · · ∧ Pπ(n),

where π(n) is the polynomial that gives the space bound of the
machine. We have given a collection of mutually recursive func-
tions X[q, i] and Y [q, i, a]. This can be turned into a program
term using the µ-operator in the standard way. Since the space
is bounded by a polynomial π(n), there are polynomially many
positions i. So, the size of the program is polynomial in the size
of the machine. Finally, the claim is that the machine accepts iff
Φ |= {start}X[q0, 1]{A}, where Φ is the collection of our as-
sumptions for the atomic tests and the atomic programs.

Y [q, i, a] , write b1 at i; // write b1 at current position
X[q1, i+ d1]; // spawn first child process
write a at i; // restore tape
if (¬A) then { // first process rejected

write b2 at i; // write b2 at current position
X[q2, i+ d2]; // spawn second child process
write a at i; // restore tape
// result = A

} else { // first process accepted
id // propagate success upwards

}
Figure 3. Encoding existential branching with recursive calls.

6. Conclusion
We have shown that the simple implicational theory of monadic
recursion schemes reduces to their equational theory, with an expo-
nential blow-up. We also considered the propositional Hoare theory
of such schemes, and we obtained a sound and complete calculus.
Finally, the Hoare theory was shown to be EXPTIME-complete.

References
[1] S. Böhm and S. Göller. Language equivalence of deterministic real-

time one-counter automata is NL-complete. In Mathematical Founda-
tions of Computer Science (MFCS 2011), pages 194–205. 2011.

[2] S. Böhm, S. Göller, and P. Jančar. Equivalence of deterministic one-
counter automata is NL-complete. In Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC ’13), pages 131–
140, 2013.

[3] S. Böhm, S. Göller, and P. Jancar. Equivalence of deterministic one-
counter automata is NL-complete. CoRR, abs/1301.2181, 2013. URL
http://arxiv.org/abs/1301.2181.

[4] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation.
Journal of the Association for Computing Machinery, 28(1):114–133,
1981.

[5] E. Cohen and D. Kozen. A note on the complexity of propositional
Hoare logic. ACM Transactions on Computational Logic, 1(1):171–
174, 2000.

[6] M. Davis. Computability and Unsolvability. Dover Publications, 1982.
[7] E. P. Friedman. Equivalence problems for deterministic context-free

languages and monadic recursion schemes. Journal of Computer and
System Sciences, 14(3):344–359, 1977.

[8] S. J. Garland and D. C. Luckham. Program schemes, recursion
schemes, and formal languages. Journal of Computer and System Sci-
ences, 7(2):119–160, 1973.

[9] S. Ginsburg and S. Greibach. Deterministic context free languages.
Information and Control, 9(6):620–648, 1966.

[10] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
[11] P. Jančar. A short decidability proof for DPDA language equiva-

lence via first-order grammars. CoRR, abs/1010.4760, 2011. URL
http://arxiv.org/abs/1010.4760.

[12] P. Jančar. Decidability of DPDA language equivalence via first-order
grammars. In Proceedings of the 27th Annual IEEE Symposium on
Logic in Computer Science (LICS 2012), pages 415–424, 2012.

[13] D. Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events. In Proceedings of Sixth Annual IEEE
Symposium on Logic in Computer Science (LICS ’91), pages 214–225,
1991.

[14] D. Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events. Information and Computation, 110(2):366–
390, 1994.

[15] D. Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems, 19(3):427–443, May 1997.

[16] D. Kozen. On Hoare logic and Kleene algebra with tests. In Pro-
ceedings of the 14th Symposium on Logic in Computer Science (LICS
1999), pages 167–172, 1999.

[17] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM
Transactions on Computational Logic, 1(1):60–76, 2000.

[18] D. Kozen and J. Tiuryn. On the completeness of propositional Hoare
logic. Information Sciences, 139(3-4):187–195, 2001.

[19] E. L. Post. Recursive unsolvability of a problem of Thue. The Journal
of Symbolic Logic, 12(1):1–11, 1947.

[20] G. Sénizergues. The equivalence problem for deterministic pushdown
automata is decidable. In Proceedings of the 24th International Collo-
quium on Automata, Languages and Programming (ICALP ’97), pages
671–681. Springer, 1997.

[21] G. Sénizergues. L(A) = L(B)? Decidability results from complete
formal systems. Theoretical Computer Science, 251(12):1–166, 2001.

[22] G. Sénizergues. L(A) = L(B)? A simplified decidability proof. Theo-
retical Computer Science, 281(1):555–608, 2002.

[23] G. Sénizergues. The equivalence problem for t-turn DPDA is Co-NP.
In Proceedings of the 30th International Colloquium on Automata,
Languages and Programming (ICALP 2003), pages 478–489, 2003.

[24] C. Stirling. Decidability of DPDA equivalence. Theoretical Computer
Science, 255(1-2):1–31, 2001.

[25] C. Stirling. Deciding DPDA equivalence is primitive recursive. In
Proceedings of the 29th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2002), pages 821–832. Springer,
2002.

[26] G. Winskel. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, Cambridge, MA, USA, 1993.

