
An Introduction to the StreamQRE
Language

Rajeev ALUR and Konstantinos MAMOURAS
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA

Abstract. Real-time decision making in emerging IoT applications typically re-
lies on computing quantitative summaries of large data streams in an efficient and
incremental manner. We give here an introduction to the StreamQRE language,
which has recently been proposed for the purpose of simplifying the task of pro-
gramming the desired logic in such stream processing applications. StreamQRE
provides natural and high-level constructs for processing streaming data, and it
offers a novel integration of linguistic constructs from two distinct programming
paradigms: streaming extensions of relational query languages and quantitative ex-
tensions of regular expressions. The former allows the programmer to employ re-
lational constructs to partition the input data by keys and to integrate data streams
from different sources, while the latter can be used to exploit the logical hierarchy
in the input stream for modular specifications.

Keywords. data stream processing, Quantitative Regular Expressions

Introduction

The last few years have witnessed an explosion of IoT systems in applications such as
smart buildings, wearable devices, and healthcare [1]. A key component of an effective
IoT system is the ability to make decisions in real-time in response to data it receives.
For instance, a gateway router in a smart home should detect and respond in a timely
manner to security threats based on monitored network traffic, and a healthcare system
should issue alerts in real-time based on measurements collected from all the devices for
all the monitored patients. While the exact logic for making decisions in different ap-
plications requires domain-specific insights, it typically relies on computing quantitative
summaries of large data streams in an efficient and incremental manner. Programming
the desired logic as a deployable implementation is challenging due to the enormous
volume of data and hard constraints on available memory and response time.

The recently proposed language StreamQRE [2] (pronounced StreamQuery) is
meant to assist IoT programmers: it makes the task of specifying the desired decision-
making logic simpler by providing natural and high-level declarative constructs for
processing streaming data, and the proposed compiler and runtime system facilitates
deployment with guarantees on memory footprint and per-item processing time. The
StreamQRE language extends quantitative regular expressions—an extension of clas-

sical regular expressions for associating numerical values with strings [3], with con-
structs typical in extensions of relational query languages for handling streaming
data [4,5,6,7,8,9,10,11]. The novel integration of linguistic constructs allows the pro-
grammer to impart to the input data stream a logical hierarchical structure (for instance,
view patient data as a sequence of episodes and view network traffic as a sequence of
Voice-over-IP sessions) and also employ relational constructs to partition the input data
by keys (e.g., patient identifiers and IP addresses).

The basic object in the language is a streaming query, which is modeled as a partial
function from sequences of input data items to an output value (which can be a relation).
We present the syntax and semantics of the StreamQRE language with type-theoretic
foundations. In particular, each streaming query has an associated rate that captures its
domain, that is, as it reads the input data stream, the prefixes that trigger the production of
the output. In the StreamQRE calculus, the rates are required to be regular, captured by
symbolic regular expressions, and the theoretical foundations of symbolic automata [12]
lead to decision procedures for constructing well-typed expressions. Regular rates also
generalize the concept of punctuations in streaming database literature [6].

The StreamQRE language has a small set of core combinators with clear semantics.
An atomic query processes individual items. The constructs split and iter are quan-
titative analogs of concatenation and Kleene-iteration, and integrate hierarchical pattern
matching with familiar sequential iteration over a list of values. The global choice opera-
tor or allows selection between two expressions with disjoint rates. The combination op-
erator combine allows combining output values produced by multiple expressions with
equivalent rates processing input data stream in parallel. The key-based partitioning op-
erator map-collect is a generalization of the widely used map-reduce construct that
partitions the input data stream into a set of sub-streams, one per key, and returns a rela-
tion. Finally, the streaming composition operator� streams the sequence of outputs pro-
duced by one expression as an input stream to another, allowing construction of pipelines
of operators.

The core StreamQRE constructs can be used to define a number of derived patterns
that are useful in practice, such as tumbling and sliding windows [6], selection, and fil-
tering. The language has been implemented as a Java library that supports the basic and
derived constructs [13]. We show how to program in StreamQRE using an illustrative ex-
ample regarding monitoring patient measurements, the recent Yahoo Streaming Bench-
mark for advertisement-related events [14], and the NEXMark Benchmark for auction
bids [15]. These examples illustrate how hierarchically nested iterators and global case
analysis facilitate modular stateful sequential programming, and key-based partitioning
and relational operators facilitate traditional relational programming. The two styles of-
fer alternatives for expressing the same query in some cases, while some queries are best
expressed by intermingling the two views.

Organization. The remaining paper is organized as follows. Section 1 introduces the
syntax and semantics of the StreamQRE language, and explains how each construct is
used with an illustrative example regarding monitoring patient measurements. Section 2
shows how to use StreamQRE to program some common stream transformation. Sec-
tion 3 presents some example queries for the Yahoo Streaming Benchmark, and Section 4
gives queries for the NEXMark Benchmark.

1. The StreamQRE Language

As a motivating example, suppose that a patient is being monitored for episodes of a
physiological condition such as epilepsy [16], and the data stream consists of four types
of events: (1) An event B marking the beginning of an episode, (2) a time-stamped mea-
surement M(ts,val) by a sensor, (3) an event E marking the end of an episode, (4) and
an event D marking the end of a day. Given such an input data stream, suppose we want
to specify a policy f that outputs every day, the maximum over all episodes during that
day, of the average of all measurements during an episode. A suitable abstraction is to
impart a hierarchical structure to the stream:

episode
summary

daily summary

The data stream is a sequence of days (illustrated as diamonds), where each day is a
sequence of episodes (illustrated as rectangles), and each episode is a nonempty sequence
of corresponding measurements (shown as circles) between a begin B marker (shown as
an opening bracket) and an end E marker (shown as a closing bracket). The end-of-day
marker is shown as a star. The regular expression ((B ·M+ ·E)∗ ·D)∗ over the event types
B, M, E and D specifies naturally the desired hierarchical structure. For simplicity, we
assume that episodes do not span day markers.

The policy f thus describes a hierarchical computation that follows the structure of
this decomposition of the stream: the summary of each episode (pattern B ·M+ ·E) is an ag-
gregation of the measurements (pattern M) it contains, and similarly the summary of each
day (pattern (B · M+ · E)∗ · D) is an aggregation of the summaries of the episodes it con-
tains. In order for the policy to be fully specified, the hierarchical decomposition (parse
tree) of the stream has to be unique. Otherwise, the summary would not be uniquely
determined and the policy would be ambiguous. To guarantee uniqueness of parsing at
compile time, each policy f describes a symbolic unambiguous regular expression, called
its rate, which allows for at most one way of decomposing the input stream. The qualifier
symbolic means that the alphabets (data types) can be of unbounded size, and that unary
predicates are used to specify classes of letters (data items) [12]. The use of regular rates
implies decidability of unambiguity. Even better, there are efficiently checkable typing
rules that guarantee unambiguity for all policies [17,18,19].

To define quantitative queries, we first choose a typed signature which describes
the basic data types and operations for manipulating them. We fix a collection of basic
types, and we write A,B, . . . to range over them. This collection contains the type Bool

of boolean values, and the unit type Ut whose unique inhabitant is denoted by def. It is
also closed under the cartesian product operation × for forming pairs of values. Typical
examples of basic types are the natural numbers Nat, the integers Int, and the real
numbers R.

We also fix a collection of basic operations on the basic types, for example the k-ary
operation op : A1×·· ·×Ak → B. The identity function on D is written as idD : D→ D,
and the operations π1 : A×B→ A and π2 : A×B→ B are the left and right projection
respectively. We assume that the collection of operations contains all identities and pro-

jections, and is closed under pairing and function composition. To describe derived op-
erations we use a variant of lambda notation that is similar to Java’s lambda expressions
[20]. That is, we write (A x)-> t(x) to mean λx:A.t(x) and (A x, B y, C z)-> t(x,y,z) to
mean λx:A,y:B,z:C.t(x,y,z). For example, the identity function on D is (D x) -> x, the
left projection on A×B is (A x, B y)->x, the right projection on A×B is (A x, B y)->y,
and (D x)->def is the unique function from D to Ut. We will typically use lambda ex-
pressions in the context of queries from which the types of the input variables can be
inferred, so we will omit them as in (x,y)-> x.

For every basic type D, assume that we have fixed a collection of atomic predicates,
so that the satisfiability of their Boolean combinations (built up using the Boolean oper-
ations: and, or, not) is decidable. We write ϕ : D→ Bool to indicate that ϕ is a predicate
on D, and we denote by trueD : D→ Bool the predicate that is always true. The predicate
((Int x)-> x > 0) : Int→ Bool is true of the strictly positive integers.

Example 1. For the example patient-monitoring stream described previously, suppose
that we now allow the stream to contain information for several patients. The data type
DP for this multiple-patient monitoring stream is the tagged (disjoint) union:

DP = {D}∪{B(p), E(p) | p ∈ PID}∪{M(p, t,v) | p ∈ PID, t ∈ T, and v ∈ V},

where PID is the set of patient identifiers, T is the set of timestamps, and V is the set
of scalars for the measurements. The projection functions typ : DP→ {D,B,E,M}, pId :
DP → PID, ts : DP → T and val : DP → V get the type, patient identifier, timestamp,
and value of a data item respectively (when undefined, the functions simply return some
default value). For a data item x ∈ DP, we write x.typ, x.pId, x.ts and x.val to denote
the application of these functions.

Symbolic regular expressions. For a type D, we define the set of symbolic regular
expressions over D [21], denoted RE〈D〉, with the following grammar:

r ::= ϕ | [predicate on D]

ε | [empty sequence]

rt r | [nondeterministic choice]

r · r | [concatenation]

r∗. [iteration]

The concatenation symbol · is sometimes omitted, that is, we write rs instead of r · s. The
expression r+ (iteration at least once) abbreviates r · r∗. We write r : RE〈D〉 to indicate
the r is a regular expression over D. Every expression r : RE〈D〉 is interpreted as a set
JrK⊆ D∗ of finite sequences over D.

JϕK , {d ∈ D | ϕ(d) = true} Jrt sK , JrK∪ JsK Jr∗K ,
⋃

n≥0JrKn

JεK , {ε} Jr · sK , JrK · JsK

For subsets X ,Y ⊆ D∗, we define X ·Y = {uv | u ∈ X and v ∈ Y} and Xn is given by
induction on n as follows: X0 = {ε} and Xn+1 = Xn ·X . Two expressions are said to be
equivalent is they denote the same language.

tim
e

←−
−−
−−
−−
−−
−−
−−
−−
−−
−

data item stream seen so far current output (if any)

ε f (ε)

d1 d1 f (d1)

d2 d1 d2 f (d1 d2)

d3 d1 d2 d3 f (d1 d2 d3)

d4 d1 d2 d3 d4 f (d1 d2 d3 d4)

d5 d1 d2 d3 d4 d5 f (d1 d2 d3 d4 d5)

· · ·

Figure 1. A streaming transformation f specifies the output for every prefix of the stream.

Example 2. The symbolic regular expression ((Nat x)-> true)∗ ·((Nat x)->x > 0) over
the type Nat of natural numbers denotes all sequences that end with a strictly positive
number.

Unambiguity. The notion of unambiguity for regular expressions [17] is a way of for-
malizing the requirement of uniqueness of parsing. The languages L1, L2 are said to be
unambiguously concatenable if for every word w ∈ L1 ·L2 there are unique w1 ∈ L1 and
w2 ∈ L2 with w = w1w2. The language L is said to be unambiguously iterable if for every
word w ∈ L∗ there is a unique integer n ≥ 0 and unique wi ∈ L with w = w1 · · ·wn. The
definitions of unambiguous concatenability and unambiguous iterability extend to regu-
lar expressions in the obvious way. Now, a regular expression is said to be unambiguous
if it satisfies the following:

1. For every subexpression e1t e2, e1 and e2 are disjoint.
2. For every subexpression e1 · e2, e1 and e2 are unambiguously concatenable.
3. For every subexpression e∗, e is unambiguously iterable.

Checking whether a regular expression is unambiguous can be done in polynomial time.
For the case of symbolic regular expressions this results still holds, under the assumption
that satisfiability of the predicates can be decided in unit time [3].

Example 3. Consider the finite alphabet Σ = {a,b}. The regular expression r = (a+
b)∗b(a+b)∗ denotes the set of sequences with at least one occurrence of b. It is ambigu-
ous, because the subexpressions (a+b)∗b and (a+b)∗ are not unambiguously concaten-
able: the word w = ababa matches r, but there are two different splits w = ab · aba and
w = abab ·a that witness the ambiguity of parsing. The regular expressions a∗b(a+b)∗
and (a+b)∗ba∗ are both equivalent to r, and they are unambiguous.

Streaming transformations. The basic object in the StreamQRE language is the query,
which describes the transformation of an input stream into an output stream. At any
given moment in time, only a finite number of data items have arrived, therefore a stream
transformation can be modeled as a function from D∗, where D is the type of input
data items, to C, where C is the type of the outputs. In other words, the transformation
describes how to aggregate the entire stream seen so far into an output value. As the input
stream gets extended with more and more items, the emitted outputs form a stream of
elements of C. We want to allow for the possibility of not having an output with every
new element arrival, therefore a streaming transformation is modeled as a partial function
D∗⇀C. See Figure 1 for an illustration.

Example 4. For example, suppose we want to describe a filtering transformation on a
stream of integers, where only the nonnegative numbers are retained and the negative
numbers are filtered out. The function f : Int∗⇀ Int that describes this transformation
is defined on the nonempty sequences v1 v2 . . . vn with vn ≥ 0, and the value is the last
number of the sequence, i.e. the current item.

tim
e

←
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−

data item stream seen so far current output (if any)

ε

3 3 3

−2 3 −2

4 3 −2 4 4

8 3 −2 4 8 8

−1 3 −2 4 8 −1

5 3 −2 4 8 −1 5 5

· · ·

The set of stream prefixes for which this function is defined is denoted by the symbolic
regular expression ((Int x) -> true)∗ · ((Int x) -> x > 0). After having consumed the
input stream 3 −2 4 8 −1 5, the overall output stream is 3 4 8 5.

The rate of a transformation describes which stream prefixes trigger the production
of output. In some other formalisms, such as transducers [22,23] and synchronous lan-
guages [24], output is typically produced at every new data item arrival. In StreamQRE,
on the other hard, output does not have to be produced with every new item. For example,
after processing n data items, the output stream generally consists of k ≤ n items.

Streaming Queries. We now introduce formally the language of Streaming Quantita-
tive Regular Expressions (QREs) for representing stream transformations. For brevity,
we also call these expressions queries. A query represents a streaming transformation
whose domain is a regular set over the input data type. The rate of a query f, written
R(f), is a symbolic regular expression that denotes the domain of the transformation that
f represents. The definition of the query language has to be given simultaneously with
the definition of rates (by mutual induction), since the query constructs have typing re-
strictions that involve the rates. We annotate a query f with a type QRE〈D,C〉 to denote
that the input stream has elements of type D and the outputs are of type C. Figure 2 shows
the full formal syntax of streaming queries. The decidability of type checking follows
from results in [17,18,19] and it is also discussed in [3].

Example 5 (Rate of a query). In the patient monitoring example described in the be-
ginning of this section, the statistical summary of a patient’s measurements should be
output at the end of each day, and thus, depends only on the types of events in a regular
manner. The rate in this case is the regular expression ((B ·M+ ·E)∗ ·D)∗. The tag B in this
expression is abbreviation for the predicate (x-> x.typ = B). We also write ¬B to stand
for the predicate (x-> x.typ 6= B). Similar abbreviations are considered for the tags M, E
and D. We will be using these abbreviations freely from now on, since their meaning is
obvious from the context.

satisfiable ϕ : D→ Bool op : D→C
(atomic)

atom(ϕ, op) : QRE〈D,C〉
R(atom(ϕ, op)) = ϕ

c ∈C (empty)
eps(c) : QRE〈D,C〉

R(eps(c)) = ε

f : QRE〈D,A〉 g : QRE〈D,B〉 op : A×B→C
R(f) and R(g) are unambiguously concatenable

(concatenation)
split(f, g, op) : QRE〈D,C〉

R(split(f, g, op)) = R(f) ·R(g)

init : QRE〈D,B〉 body : QRE〈D,A〉 op : B×A→ B
R(body) is unambiguously iterable

R(init) and R(body)∗ are unambiguously concatenable
(iteration)

iter(init, body, op) : QRE〈D,B〉
R(iter(f, g, op)) = R(f) ·R(g)∗

f : QRE〈D,C〉 g : QRE〈D,C〉 R(f) and R(g) are disjoint
(choice)

or(f, g) : QRE〈D,C〉
R(or(f, g)) = R(f)tR(g)

f : QRE〈D,A〉 op : A→ B
(application)

apply(f, op) : QRE〈D,B〉
R(apply(f)) = R(f)

f : QRE〈D,A〉 g : QRE〈D,B〉 op : A×B→C R(f), R(g) equivalent
(combination)

combine(f, g, op) : QRE〈D,C〉
R(combine(f, g, op)) = R(f)

f : QRE〈D,C〉 g : QRE〈C,E〉
(streaming composition)

f� g : QRE〈D,E〉

ϕS : D→ Bool m : D→ K f : QRE〈D,C〉 r : RE〈D〉 R(f)⊆ r \ϕ
∗
S

r = s[(¬ϕS)
∗

ϕS/ϕS], where the only predicate s : RE〈D〉 can contain is ϕS (key-based
partitioning)map-collect(ϕS, m, f, r) : QRE〈D,Map〈K,C〉〉

R(map-collect(ϕ,m,f,r)) = r

Figure 2. The syntax of Streaming Quantitative Regular Expressions.

Atomic queries. The basic building blocks of queries are expressions that describe the
processing of a single data item. Suppose ϕ : D→ Bool is a predicate over the data item
type D and op : D→ C is an operation from D to the output type C. Then, the atomic
query atom(ϕ,op) : QRE〈D,C〉, with rate ϕ , is defined on single-item streams that satisfy
the predicate ϕ . The output is the value of op on the input element.

Notation: It is very common for op to be the identity function, and ϕ to be the
always-true predicate. So, we abbreviate the query atom(ϕ, (D x)->x) by atom(ϕ), and
the query atom((D x)-> true) by atom().

Example 6. For the stream of monitored patients, the query that matches a single mea-
surement item and returns its value is f= atom(x->x.typ= M, x->x.val). The type of
f is QRE〈DP,V〉 and its rate is M.

Empty sequence. The query eps(c) : QRE〈D,C〉, where c is a value of type C, is only
defined on the empty sequence ε and it returns the output c.

Iteration. Suppose that init : QRE〈D,B〉 describes the computation for initializing an
aggregate value of type B, and body : QRE〈D,A〉 describes a computation that we want
to iterate over consecutive subsequences of the input stream, in order to aggregate the
values (of type A) sequentially using an aggregator op : B×A→ B.

More specifically, we split the input stream w into subsequences w = u w1 w2 . . . wn,
where u matches init and each wi matches body. We apply init to u and body to
each of the wi, thus producing the output values b0 and a1 a2 · · · an with b0 = init(u)
and ai = body(wi). Finaly, we combine these results using the list iterator left fold with
start value b0 and aggregation operation op : B×A→ B by folding the list of values
a1 a2 · · · an. This can be formalized with the combinator fold : B× (B×A→ B)×A∗ →
B, which takes an initial value b ∈ B and a stepping map op : B×A→ B, and iterates
through a sequence of values of type A:

fold(b,op,ε) = b fold(b,op,γa) = op(fold(b,op,γ),a)

for all sequences γ ∈ A∗ and all values a ∈ A. E.g., fold(b,op,a1a2) = op(op(b,a1),a2).
The query g= iter(init, body, op) : QRE〈D,B〉 describes the computation of the

previous paragraph. In order for g to be well-defined as a function, every input stream w
that matches g must be uniquely decomposable into w = uw1w2 . . .wn with u matching
init and each wi matching body. This requirement can be expressed equivalently as
follows: the rate R(body) is unambiguously iterable, and the rates R(init), R(body)∗
are unambiguously concatenable.

These sequential iterators can be nested imparting a hierarchical structure to the
input data stream facilitating modular programming. In the single-patient monitoring
stream, for example, we can associate an iterator with the episode nodes to summarize
the sequence of measurements in an episode, and another iterator with the day nodes to
summarize the sequence of episodes during a day.

Example 7. For the stream of monitored patients, the query g below matches a sequence
of measurements and returns the sum of their values.

f : QRE〈DP,V〉= atom(x-> x.typ= M, x-> x.val) // rate M

g : QRE〈DP,V〉= iter(eps(0), f, (x,y)-> x+ y) // rate M∗

Combination and application. Assume the queries f and g describe stream transfor-
mations with outputs of type A and B respectively that process the same set of input se-
quences, and op is an operation of type A×B→ C. The query combine(f, g, op) de-
scribes the computation where the input is processed according to both f and g in parallel
and their results are combined using op. Of course, this computation is meaningful only
when both f and g are defined on the input sequence. So, we demand w.l.o.g. that the
rates of f and g are equivalent.

This binary combination construct generalizes to an arbitrary number of queries.
For example, we write combine(f, g, h, (x,y,z)->op(x,y,z)) for the ternary variant. In
particular, we write apply(f,op) for the case of one argument.

Example 8 (Average). For the stream of monitored patients, the query h below matches
a nonempty sequence of measurements and returns the average of their values.

f1 : QRE〈DP,V〉= atom(x-> x.typ= M, x-> x.val) // rate M

g1 : QRE〈DP,V〉= iter(f1, f1, (x,y)-> x+ y) // rate M+

f2 : QRE〈DP,V〉= atom(x-> x.typ= M, x->1) // rate M

g2 : QRE〈DP,V〉= iter(f2, f2, (x,y)-> x+ y) // rate M+

h : QRE〈DP,V〉= combine(g1, g2, (x,y)-> x/y) // rate M+

The query g1 computes the sum of a nonempty sequence of measurements, and the query
g2 computes the length of a nonempty sequence of measurements. An alternative im-
plementation uses a single iteration construct and an accumulator that is the pair of the
running sum and the running count.

f′ : QRE〈DP,V×V〉= atom(x-> x.typ= M, x-> (x.val,1)) // rate M

g′ : QRE〈DP,V×V〉= iter(f′, f′, (x,y)-> x+ y) // rate M+

h′ : QRE〈DP,V〉= apply(g′, x->π1(x)/π2(x)) // rate M+

The + operation in g′ is componentwise addition of pairs of values. The query h′ com-
putes the average by diving the running sum by the running count.

Example 9 (Standard Deviation). For a sequence x1,x2, . . . ,xn of numbers, the mean
is the simple average µ = (∑ixi)/n, and the standard deviation is σ = (∑i(xi− µ)2)/n.
Equivalently, we can calculate the quantity σ ·n as follows:

σ ·n = ∑i(x
2
i +µ

2−2µxi) = (∑ix
2
i)+nµ

2−2µ(∑ixi) = (∑ix
2
i)− (∑ixi)

2/n.

So, both the mean and the standard deviation can be calculated from the quantities ∑ixi
and ∑ix2

i and the count n. This suggests the following query for the streaming computa-
tion of the standard deviation for a sequence of patient measurements:

f1 : QRE〈DP,V〉= atom(x-> x.typ= M, x->1) // rate M

g1 : QRE〈DP,V〉= iter(f1, f1, (x,y)-> x+ y) // rate M+

f2 : QRE〈DP,V〉= atom(x-> x.typ= M, x-> x.val) // rate M

g2 : QRE〈DP,V〉= iter(f2, f2, (x,y)-> x+ y) // rate M+

f3 : QRE〈DP,V〉= atom(x-> x.typ= M, x-> x.val · x.val) // rate M

g3 : QRE〈DP,V〉= iter(f3, f3, (x,y)-> x+ y) // rate M+

h : QRE〈DP,V〉= combine(g1, g2, g3, (x,y,z)-> z− y2/x) // rate M+

The query g1 computes the running count, the query g2 computes the running sum ∑ixi,
and the query g3 computes the running sum of squares ∑ix2

i .

Example 10 (Integration). For the single-patient monitoring stream, assume that the di-
agnosis depends on the average value of the piecewise-linear interpolant of the sampled
measurements. Computing this quantity corresponds to integrating the interpolant over
the interval of the measurements. That is, the quantitative summary of a given sequence
(t1,v1), (t2,v2), . . . , (tn,vn) of timestamped values with t1 < t2 < · · ·< tn is

An =
1

(tn− t1)
·

n−1

∑
i=1

(vi + vi+1)(ti+1− ti)
2

.

To compute the quantity Sn = ∑
n−1
i=1 (vi +vi+1)(ti+1− ti) incrementally we must maintain

the vector Xn = (tn,vn,Sn), where tn is the last timestamp, vn is the last value, and Sn is
the running sum. We then put X1 = (t1,v1,0) and

Xn+1 = (tn+1, vn+1, Sn +(vn + vn+1)(tn+1− tn)).

From Xn = (tn,vn,Sn) and the first timestamp t1 we can then compute An = Sn/2(tn− t1).

f : QRE〈DP,DP〉= atom(x-> x.typ= M) // rate M

g1 : QRE〈DP,T〉= iter(apply(f, x-> x.ts), f, (x,y)-> x) // rate M+

op = (T×V×V x, DP y)->
(y.ts, y.val, π3(x)+(π2(x)+ y.val)(y.ts−π1(x))

g2 : QRE〈DP,T×V×V〉= iter(apply(f, x-> (x.ts,x.val,0)), f, op) // rate M+

op′ = (T x, T×V×V y)->
if (π1(y)− x > 0) then π3(y)/2(π1(y)− x) else π2(y)

h= combine(g1, g2, op′) // rate M+

The query g1 passes along the first timestamp, and the query g2 calculates the vector
Xn. The top-level query h calculates the average of the piecewise-linear interpolant when
n≥ 2, and returns the value v1 when n = 1.

Quantitative concatenation. Suppose that we want to perform two streaming compu-
tations in sequence: first execute the query f : QRE〈D,A〉, then the query g : QRE〈D,B〉,
and finally combine the two results using the operation op : A×B→C.

More specifically, we split the input stream into two parts w = w1w2, process the first
part w1 according to f with output f(w1), process the second part w2 according to g

with output g(w2), and produce the final result op(f(w1),g(w2)) by applying op to the
intermediate results.

The query split(f, g, op) : QRE〈D,C〉 describes this computation. In order
for this construction to be well-defined as a function, every input w that matches
split(f, g, op) must be uniquely decomposable into w=w1w2 with w1 matching f and
w2 matching g. In other words, the rates of f and g must be unambiguously concatenable.

The binary split construct extends naturally to more than two arguments. For ex-
ample, the ternary version would be split(f, g, h,(x,y,z)->op(x,y,z)).

Example 11. For the stream of monitored patients, we say that a measurement is high-
risk if its value exceeds 50. The query h : QRE〈DP,V〉 below matches a sequence of mea-
surements containing at least one high-risk measurement, and returns the maximum value
after the last occurrence of a high-risk measurement.

f1 : QRE〈DP,Ut〉= atom(x-> x.typ= M, x->def) // rate M

g1 : QRE〈DP,Ut〉= iter(eps(def), f1, (x,y)->def) // rate M∗

f2 : QRE〈DP,Ut〉= atom(x-> x.typ= M and x.val> 50, x->def) // M(v > 50)

f3 : QRE〈DP,V〉= atom(x-> x.typ= M and x.val≤ 50, x-> x.val) // M(v≤ 50)

g3 : QRE〈DP,V〉= iter(eps(−∞), f3, (x,y)->max(x,y)) // M(v≤ 50)∗

h : QRE〈DP,V〉= split(g1, f2, g3, (x,y,z)-> z) // M∗ ·M(v > 50) ·M(v≤ 50)∗

The query g1 processes a sequence of measurements and returns nothing, the query f2
processes a single high-risk measurement and returns nothing, and the query g3 processes
a sequence of non-high-risk measurements and returns the maximum value. The top-level
query h executes g1, f2 and g3 in sequence and returns the output of g3.

Global choice. Given queries f and g of the same type with disjoint rates r and s,
the query or(f,g) applies either f or g to the input stream depending on which one is
defined. The rate of or(f,g) is the union rt s. This choice construction allows a case
analysis based on a global regular property of the input stream. In our patient example,
suppose we want to compute a statistic across days, where the contribution of each day is
computed differently depending on whether or not a specific physiological event occurs
sometime during the day. Then, we can write a query summarizing the daily activity with
a rate capturing good days (the ones without any significant event) and a different query
with a rate capturing bad days, and iterate over their disjoint union.

Example 12. For the stream of monitored patients, we describe a query that processes
a nonempty sequence of episodes (hence, with rate (B ·M+ ·E)+) and outputs at the end
of each episode its summary. The summary of the episode is the average of all measure-
ments if there are no high-risk measurements (high-risk: value exceeds 50), otherwise
it is the average of only the high-risk measurements. We start with query g, which pro-
cesses a nonempty sequence of non-high-risk measurements and returns the sum/count:

ϕ : DP→ Bool= x-> x.typ= M and x.val≤ 50 // predicate on DP

f : QRE〈DP,V×V〉= atom(ϕ, x-> (x.val,1)) // rate M(v≤ 50)

g : QRE〈DP,V×V〉= iter(f, f, (x,y)-> x+ y) // rate M(v≤ 50)+

Similarly, the query h below processes a sequence with at least one high-risk measure-
ment and returns the sum and count of the high-risk measurements. The idea for describ-
ing this computation comes from the following observation: the language over the alpha-
bet Σ = {a,b} that contains at least one occurrence of b is denoted by the ambiguous
expression (a+b)∗b(a+b)∗, which is equivalent to the unambiguous a∗(ba∗)+.

f∗1 : QRE〈DP,Ut〉= iter(eps(def), atom(ϕ), (x,y)->def) // rate M(v≤ 50)∗

ψ : DP→ Bool= x-> x.typ= M and x.val> 50 // predicate on DP

f2 : QRE〈DP,V×V〉= atom(ψ, x-> (x.val,1)) // M(v > 50)

g′ : QRE〈DP,V×V〉= split(f2, f
∗
1, (x,y)-> x) // r , M(v > 50) ·M(v≤ 50)∗

g′′ : QRE〈DP,V×V〉= iter(g′, g′, (x,y)-> x+ y) // rate r+

h : QRE〈DP,V×V〉= split(f∗1, g
′′, (x,y)-> y) // rate M(v≤ 50)∗ · r+

We have written the queries g and h which process sequences of measurements dif-
ferently based on the occurrence of high-risk measurements. The top-level query m :
QRE〈DP,V〉 is then given below:

k : QRE〈DP,V×V〉= or(g, h) // rate M+

fB : QRE〈DP,DP〉= atom(x-> x.typ= B) // rate B

fE : QRE〈DP,DP〉= atom(x-> x.typ= E) // rate E

ep : QRE〈DP,V〉= split(fB, k, fE, (x,y,z)->π1(y)/π2(y)) // rate B ·M+ ·E

m : QRE〈DP,V〉= iter(ep, ep, (x,y)-> y) // rate (B ·M+ ·E)+

To see why the rate of or(g,h) is M+, it suffices to notice that the regular expressions
(atb)+ and a+ta∗(ba∗)+ are equivalent.

Key-based partitioning. The input data stream for our running example contains mea-
surements from different patients, and suppose we have written a query f that computes a
summary of data items corresponding to a single patient. Then, to compute an aggregate
across patients, the most natural way is to partition the input stream by a key, the patient

Figure 3. Partitioning a stream into several parallel sub-streams according to a key (letter in box).

identifier in this case, supply the corresponding projected sub-stream to a copy of f, one
per key, and collect the set of resulting values.

In order to synchronize the per-key computations, we specify a predicate ϕS : D→
Bool which defines the synchronization elements. The rest of the elements, which sat-
isfy the negation ¬ϕS, are the keyed elements. We typically write K for the set of keys,
and map : D→ K for the function that projects the key from an item (the value of map
on synchronization items is irrelevant). For the patient input data type of Example 1 we
choose: ϕS = (x-> x.typ = D) and K = PID. The partitioning ensures that the synchro-
nization elements are preserved so that the outputs of different copies of f are synchro-
nized correctly (for example, if each f outputs a patient summary at the end of the day,
then each sub-stream needs to contain all the end-of-day markers). Note that the output
of such a composite streaming function is a mapping T : Map〈K,C〉 from keys to values,
where C is the output type of f and T (k) is the output of the computation of f for key
k. This key-based partitioning operation is our analog of the map-reduce operation [25]
and lends naturally to distributed processing.

We describe the partitioning of the input stream using terminology from concur-
rent programming. For every key k, imagine that there is a thread that receives and pro-
cesses the sub-stream with the data items that concern k. This includes all synchroniza-
tion items, and those keyed data items x for which map(x) = k. So, an item of D is sent
to only one thread (as prescribed by the key), but an item satisfying ϕS is sent to all
threads. See Figure 3 for an illustration of the partitioning into sub-streams. Each thread
computes independently, and the synchronization elements are used for collecting the
results of the threads. We specify a symbolic regular expression r over D, which enforces
a rate of output for the overall computation. For example, if r = (((¬D)∗ ·D)2)∗ then we
intend to have output every other day. The rate should only specify sequences that end in
a synchronization item.

Suppose f : QRE〈D,C〉 is a query that describes the per-key (i.e., per-thread) compu-
tation, and r is the overall output rate that we want to enforce. Then, the query

map-collect(ϕS, map, f, r) : QRE〈D,Map〈K,C〉〉

describes the simultaneous computation for all keys, where the overall output is given
whenever the stream matches r. The overall output is the map obtained by collecting the
outputs of all threads that match. W.l.o.g. we assume that the rate of f is contained in
r, and that it only contains streams with at least one occurrence of a keyed data item.
The rate r should only depend on the occurrence of synchronization elements, so we
demand that r = s[(¬ϕS)

∗ϕS/ϕS] where the only predicate that s : RE〈D〉 is allowed to
contain is ϕS. We write s[ψ/ϕ] to denote the result of replacing every occurrence of ϕ

in s with ψ . For example, if s = D∗ (indicating output at every day marker) and ϕS = D,

then r = s[(¬ϕS)
∗ϕS/ϕS] = ((¬D)∗D)∗. These restrictions do not affect expressiveness,

but are useful for efficient evaluation.

Example 13. Suppose we want to output at the end of each day a table with summaries
for the patients that had at least one episode within the day. Assuming that the data stream
consists of items for a single patient, we first write the query that produces the episode
summary for a single patient:

fM : QRE〈DP,V×V〉= atom(x-> x.typ= M, x-> (x.val,1)) // rate M

g : QRE〈DP,V×V〉= iter(f, f, (x,y)-> x+ y) // rate M+

fB : QRE〈DP,DP〉= atom(x-> x.typ= B) // rate B

fE : QRE〈DP,DP〉= atom(x-> x.typ= E) // rate E

h : QRE〈DP,V〉= split(fB, g, fE, (x,y,z)->π1(y)/π2(y)) // rate B ·M+ ·E

The query h, matches a full episode and returns the average of the measurements of the
episode. The daily summary is then given by:

k : QRE〈DP,V〉= iter(h, h, (x,y)->max(x,y)) // rate (B ·M+ ·E)+

l : QRE〈DP,V〉= split(k, atom(x-> x.typ= D), (x,y)-> x) // rate (B ·M+ ·E)+ ·D

The query l matches days with at least one episode and outputs the maximum episode
summary. The top-level query for the stream that concerns all patients is then:

m= map-collect(x-> x.typ= D, x-> x.pId, l, (¬D)∗ ·D) // rate (¬D)∗ ·D

n= iter(m, m, (x,y)-> y) // rate ((¬D)∗ ·D)+

The synchronization items for the query m : QRE〈DP,Map〈PID,V〉〉 are the day markers,
and the keys are the patient identifiers. The rate of l satisfies the typing restrictions of
the definition, because every sequence that matches l contains at least one keyed item
and also matches the overall rate (¬D)∗ · D. So, the query m processes a single day and
outputs the table of daily summaries for all patients that have had an episode in the day.
Finally, the query n iterates m for every consecutive day.

Streaming composition. A natural operation for query languages over streaming data
is streaming composition: given two streaming queries f and g, f� g represents the
computation in which the stream of outputs produced by f is supplied as the input stream
to g. Such a composition is useful in setting up the query as a pipeline of several stages.
We allow the operation� to appear only at the top-level of a query. So, a general query
is a pipeline of�-free queries. At the top level, no type checking needs to be done for
the rates, so we do not define the function R for queries f� g.

Example 14. Suppose the input stream concerns a single patient, and we want to com-
pute at the end of each day the minimum and maximum measurement within the day.
The first stage of the computation filters out the irrelevant B and E markers:

f : QRE〈DP,DP〉= atom(x-> x.typ= M or x.typ= D) // rate MtD

g : QRE〈DP,Ut〉= iter(eps(def), atom(), (x,y)->def) // rate (MtDtBtE)∗

h : QRE〈DP,DP〉= split(g, f, (x,y)-> y) // rate (MtDtBtE)∗ · (MtD)

The query h matches any sequence that ends in a measurement or day marker and returns
the last item. Thus, h filters out B and E items. For the second stage of the computation,
we assume that the stream consists of only M and D items.

k : QRE〈DP,V〉= atom(x-> x.typ= M, x-> x.val) // rate M

l : QRE〈DP,V〉= iter(eps(−∞), k, (x,y)->max(x,y)) // rate M∗

m : QRE〈DP,V〉= split(l, atom(x-> x.typ= D), (x,y)-> x) // rate M∗ ·D

n : QRE〈DP,V〉= iter(m, m, (x,y)-> y) // rate (M∗ ·D)+

The top-level query is then the pipeline h� n and its domain is ((MtBtE)∗ ·D)+.

2. Common Patterns

The core language of Figure 2 is expressive enough to describe many common stream
transformations. We present below several derived patterns, including stream filtering,
stream mapping, and aggregation over windows.

Iteration at least once. Let f : QRE〈D,A〉 be a query with output type A, init : A→ B
be the initialization function, and op : B×A→ B be the aggregation function. The query
iter1(f, init, op), with output type B, splits the input stream w unambiguously into
consecutive parts w1 w2 . . . wn each of which matches f, applies f to each wi produc-
ing a sequence of output values a0 a1 a2 . . .an, i.e. ai = f(wi), and combines the results
a1 a2 . . .an using the list iterator left fold with start value init(a0) ∈ B and accumulation
operation op : B×A→ B.

The construct iter1 can be encoded using iter as follows:

iter1(f, init, op), iter(apply(f, init), f, op).

The type of iter1(f, init, op) is QRE〈D,B〉 and its rate is R(f)+. We use the abbreviation
iter1(f,op) for the common case where A = B and init is the identity function.

Matching without output. Suppose r is an unambiguous symbolic regex over the data
item type D. The query match(r), whose rate is equal to r, does not produce any output
when it matches. This is essentially the same as producing def as output for a match.
The match construct can be encoded as follows:

match(ϕ), atom(ϕ, x->def)

match(r1t r2), or(match(r1), match(r2))

match(r1 · r2), split(match(r1), match(r2), (x,y)->def)

match(r∗), iter(eps(def), match(r), (x,y)->def)

An easy induction establishes that R(match(r)) = r.

Stream filtering. Let ϕ be a predicate over the type of input data items D. We want to
describe the streaming transformation that filters out all items that do not satisfy ϕ . We
implement this with the query filter(ϕ), which matches all stream prefixes that end
with an item satisfying ϕ .

filter(ϕ), split(match(true∗D), atom(ϕ), (x,y)-> y)

The type of filter(ϕ) is QRE〈D,D〉 and its rate is true∗D ·ϕ .

Stream mapping. The mapping of an input stream of type D to an output stream of
type C according to the operation op : D→C is given by the following query:

map(op), split(match(true∗D), atom(trueD, op), (x,y)-> y).

Its type is QRE〈D,C〉 and its rate is true∗D · trueD = true+D .

Example 15. Using filtering, mapping and streaming composition we can implement
the average of a sequence of scalars with a very common idiom:

f : QRE〈V,V×V〉= map(x-> (x,1)) // rate V+

g : QRE〈V×V,V×V〉= iter1(atom(), (x,y)-> x+ y) // rate (V×V)+

h : QRE〈V×V,V〉= map(x->π1(x)/π2(x)) // rate (V×V)+

and the top-level query is the pipeline f� g� h, whose type is QRE〈V,V〉.

Iteration exactly n times. Let n ≥ 1 and f : QRE〈D,A〉 be a query to iterate exactly n
times. The aggregation is specified by the initialization function init : A→ B (for the
first value) and the aggregation function op : B×A→ B. The construct itern describes
iteration (and aggregation) exactly n times, and can be encoded as follows:

iter1(f, init, op), apply(f, init)

itern+1(f, init, op), split(itern(f, init, op), f, op)

The type of itern(f, init, op) is QRE〈D,B〉 and its rate it R(f)n (n-fold concatenation).

Pattern-based tumbling windows. The term tumbling windows is used to describe the
splitting of the stream into contiguous non-overlapping regions [6]. Suppose we want to
describe the streaming function that iterates f at least once and reports the result given
by f at every match. The following query expresses this behavior:

iter-last(f), iter(f, f, (x,y)-> y).

The rate of iter-last(f) is equal to R(f)+.

Example 16. Suppose that the query f : QRE〈DP,V〉 has rate r = (B · M+ · E)∗ · D and
computes the daily summary for a single patient. Then, the query iter-last(f) has rate
r+ and computes the daily summary at the end of every day. Finally, the query

iter-last(f)� iter1(atom(), (x,y)->max(x,y))

computes at the end of every day the maximum daily summary so far. Notice that this
query can be equivalently expressed without� as iter1(f, (x,y)->max(x,y)).

Sliding windows (slide by pattern). To express a policy such as “output the statistical
summary of events in the past ten hours every five minutes” existing relational query lan-
guages provide an explicit sliding window primitive [6]. We can support this primitive,
which can be compiled into the base language by massaging the input data stream with
the introduction of suitable tags (marking five-minute time intervals in this example).
The insertion of the tags then allows to express both the window and the sliding using
very general regular patterns. Let n ≥ 1 be the size of the window, and f : QRE〈D,A〉 be
the query that processes a unit pattern. The aggregation over the window is specified by
the function init : A→ B for initialization and the aggregation function op : B×A→ B.
We give a query that computes the aggregation over the last n units of the stream (or over
all units if the stream has less than n units):

g= or(iter1(f, init, op), . . . , itern−1(f, init, op))

h= split(match(R(f)∗), itern(f, init, op), (x,y)-> y)

and wnd(f, n, init, op) = or(g, h) with rate R(f)+.

3. The Yahoo Streaming Benchmark

The Yahoo Benchmark [14] specifies a stream of advertisement-related events for an
analytics pipeline. It specifies a set of campaigns and a set of advertisements, where each
ad belongs to exactly one campaign. The static map from ads to campaigns is computed
ahead-of-time and stored in memory. Each element of the data stream is of the form

(userId, pageId, adId, eventType, eventTime),

indicating the interaction of a user with an advertisement, where eventType is one of
{view,click,purchase}. The component eventTime is the timestamp of the event.

3.1. First Yahoo query

The basic benchmark query (described in [14]) computes, at the end of every second, a
map from each campaign to the number of views associated with that campaign within
the last second. For each event tuple, this involves a lookup to determine the campaign
associated with the advertisement viewed. The reference implementation published with
the Yahoo benchmark involves a multi-stage pipeline:

(a) stage 1: filter view events,
(b) stage 2: project the ad id from each view tuple,
(c) stage 3: lookup the campaign id of each ad,
(d) stage 4: compute for every one-second window the number of events (views) associ-

ated with each campaign.

The query involes key-based partitioning on only one property, namely the derived cam-
paign id of the event. We present three ways of expressing this query in StreamQRE.
We assume w.l.o.g. that the stream also contains events S that serve as end-of-second
markers.

Implementation (I) We reproduce faithfully the reference implementation of the Ya-
hoo benchmark [14] by constructing the following multi-stage pipeline:

(1) query g1: filter view and end-of-second events,
(2) query g2: project the ad id from each view tuple,
(3) query g3: lookup the campaign id of each advertisement,
(4) query g7: compute for every one-second window the number of events (views)

associated with each campaign.

We write ADID for the type of ad identifiers, CID for the type of campaign identifiers, and
DY for the data type of the input events.

g1 : QRE〈DY,DY〉= filter(x-> x = S or x.isView)

g2 : QRE〈DY,ADID∪{S}〉= map(x->if (x = S) then S else x.adId)

g3 : QRE〈ADID∪{S},CID∪{S}〉= map(x->if (x = S) then S else lookup(x.adId))

g4 : QRE〈CID∪{S},Nat〉= iter(eps(0), atom(x-> x 6= S), (x,y)-> x+1)

g5 : QRE〈CID∪{S},Nat〉= split(g4, atom(x-> x = S), (x,y)-> x)

g6 : QRE〈CID∪{S},Nat〉= map-collect(x-> x = S, x-> x.cId, g5, (¬S)∗ ·S)

g7 : QRE〈CID∪{S},Nat〉= iter-last(g6)

The function lookup : ADID→ CID models the mapping of an ad to the campaign it
belongs to, and x.isView abbreviates the boolean expression (x.eventType = view).
The auxiliary query g5, with rate (¬S)∗ · S, calculates the length of event sequences
of a single campaign for one second. With g7 we perform (every second) key-based
partitioning based on the campaign id cId. The top-level query to compute the number
of views for each campaign per second is the pipeline

g8 = g1� g2� g3� g7.

Since the domain of g1 � g2 � g3 is D∗Y · (x -> x.isView or x = S), and g7 reports at
every S marker, the domain of g8 is D∗Y ·S (output at the end of every second).

Implementation (II) The stages g1, g2 and g3 of the pipeline of implementation (I)
can be collapsed into a single query h3 as follows:

h1 : QRE〈DY,CID∪{S}〉= atom(x-> x.isView, x->lookup(x.adId))

h2 : QRE〈DY,CID∪{S}〉= or(h1, atom(x-> x = S, x->S))

h3 : QRE〈DY,CID∪{S}〉= split(match(((DY x)-> true)∗), h2, (x,y)-> y)

The benchmark query can now be written as a two-stage pipeline h4 = h3� g7.

Implementation (III) The previous implementation uses the streaming composition
operator to simplify the map-collect part of the query. The channel handling the events of
each campaign assumes that all incoming events correspond to views, and therefore sim-
ply counts the number of tuples flowing in. We can eliminate the streaming composition
by inspecting the event type of each incoming tuple during per-campaign processing:

k1 : QRE〈DY,Nat〉= atom(x-> x.isView, x->1) // rate V (view)

k2 : QRE〈DY,Nat〉= atom(x->not (x.isView or x = S), x->0) // rate ¬(VtS)

k3 : QRE〈DY,Nat〉= or(k1, k2) // rate ¬S

k4 : QRE〈DY,Nat〉= iter(eps(0), k3, (x,y)-> x+ y) // rate (¬S)∗

k5 : QRE〈DY,Nat〉= split(k4, atom(x-> x = S), (x,y)-> x) // rate (¬S)∗ ·S

So, k5 counts the number of views in a stream of the form (¬S)∗ ·S. We now have a third
way of representing the benchmark query:

k6 : QRE〈DY,Map〈CID,Nat〉〉= map-collect(x-> x = S,

x->lookup(x.adId), k5, (¬S)∗ ·S)

k7 : QRE〈DY,Map〈CID,Nat〉〉= iter-last(k6).

In implementations (I) and (II) the queries only looked up the campaign ids for view
events, while query k7 computes the campaign id for each incoming tuple. It therefore
makes more campaign id lookups.

3.2. Second Yahoo query

We extend the Yahoo benchmark with a more complex query. An important part of orga-
nizing a marketing campaign is quantifying how successful ads are. We define success
as the number of users who purchase the product after viewing an ad for it. Our query
outputs, at the end of every second, a map from campaigns to the most successful ad of
the campaign so far, together with its success score.

Assume that we have fixed a specific ad and a specific user, and the stream consists
only of events for these. The pattern for success, given by the regular expression

r = (¬V)∗ ·V · (¬P)∗ ·P ·D∗Y ·S,

indicates that the user purchases the product after seeing the ad for it. For simplicity, we
have written V to denote the occurrence of view events, and P for purchase events. The
trailing pattern D∗Y ·S is used for matching until the end of an end-of-second marker.

Now, suppose that we have fixed a specific ad, and we want to compute its score:
the number of users that have purchased the product after viewing the ad.

g1 : QRE〈DY,Map〈UID,Ut〉〉= map-collect(x-> x = S,

x-> x.userId, match(r), D∗Y ·S)

g2 : QRE〈DY,Nat〉= apply(g1, x-> x.size)

where UID is the set of user identifiers, and size : Map〈K,C〉 → Nat returns the size
of a map data structure (number of keys that are mapped to some value). The rate of
g2 is D∗Y ·S, that is, g2 produces at the end of every second the success score of the ad.
Moreover, we observe that the specified rate D∗Y ·S is equivalent to ((¬S)∗S)+.

Given the event stream of a single campaign, we can divide it into sub-streams of
individual ads, compute the success score for each one of them, and thus determine the
most successful ad of the campaign:

g3 : QRE〈DY,Map〈ADID,Nat〉〉= map-collect(x-> x = S, x-> x.adId, g2, D∗Y ·S)

g4 : QRE〈DY,ADID×Nat〉= apply(g3, x-> x.argmax),

where argmax : Map〈K,C〉 → K ×C (for a type C that is linearly ordered) calculates
the key-value pair (k,c) that has the maximum value. In query g4, it calculates the pair
(adId, score) for the ad with the maximum score. Finally, we use the map-collect

construct to map each campaign id to the most successful ad:

g5 : QRE〈DY,Map〈CID,ADID×Nat〉〉= map-collect(x-> x = S, x-> x.cId, g4, D∗Y ·S)

The rates of g1, g2, g3, g4 and g5 are all equal to D∗Y ·S. They produce output at every S

marker occurrence in the stream.

4. The NEXMark Streaming Benchmark

The Niagara Extension to XMark benchmark (NEXMark) [15] concerns the monitoring
of an on-line auction system, such as eBay. Four kinds of events are recorded in the
event stream: (a) Person events, which describe the registering of a new person to the
auction system, (b) Item events, which mark the start of an auction for a specified item,
(c) Close events, which mark the end of an auction for a specified item, and (d) Bid
events, which record the bids made for items that are being auctioned.

Person(personId,name,ts)

Item(itemId,sellerId,initPrice,ts,dur,category)

Close(itemId,ts)

Bid(itemId,bidderId,bidIncrement,ts)

Every event contains the field ts, which is the timestamp of when the event occurred.
Every new auction event (of type Item) specifies an initial price initPrice for the
item, the duration dur of the auction, and the category to which the item belongs. Every
bid event contains the bid increment, that is, the increment by which the previous bid
is raised. So, to find the current bid for an item we need to add the initial price of the
item together with all the bid increments for the item so far. We will describe two out of
the five queries that are considered in [2], and which are minor variants of some of the
queries of the NEXMark benchmark:

Query. Calculate the number of currently open auctions. The output should be updated
at every auction start and close.

f : QRE〈DN,DN〉= filter(x-> x.isItem or x.isClose)

g : QRE〈DN,Nat〉= map(x->if (x.isItem) then +1 else −1)

h : QRE〈Nat,Nat〉= iter(eps(0), atom(), (x,y)-> x+ y)

k : QRE〈DN,Nat〉= f� g� h

We write DN for the input data type of the NEXMark benchmark.

Query. Find the item with the most bids in the last 24 hours. The output should be
updated every minute. We assume that the stream has end-of-minute markers M.

First, suppose that we process a stream consisting only of bid events that ends with
an end-of-minute marker. We compute a bid count for every item that appears:

f : QRE〈DN,Nat〉= iter(eps(0), atom(x-> x.isBid), (x,y)-> x+1) // B∗

g : QRE〈DN,Nat〉= split(f, atom(x-> x = M), (x,y)-> x) // rate B∗ ·M

h : QRE〈DN,Map〈IID,Nat〉〉= map-collect(x-> x = M,

x-> x.itemId, g, (¬M)∗ ·M) // rate (¬M)∗ ·M

k : QRE〈DN,MSet〈IID〉〉= apply(h, x-> x.toMSet()) // rate (¬M)∗ ·M

The type of item identifiers is IID, and toMSet : Map〈K,Nat〉→ MSet〈K〉 is an operation
that turns a map object into a multiset. Now, we write the top-level query:

l : QRE〈DN,MSet〈IID〉〉= wnd(k, 24 ·60, x-> x, (x,y)-> x] y) // rate ((¬M)∗ ·M)+

m : QRE〈DN,DN〉= filter(x-> x.isBid or (x = M)) // rate D∗N · (BtM)

n : QRE〈DN,IID×Nat〉= m� apply(l, x-> x.argmax)

We write] to denote multiset union. The function argmax : MSet〈C〉 →C×Nat returns
the member of the multiset with the highest count.

// Process a single measurement: rate M

QRe <DPatients , DPatients > meas =

Q.atomic(x -> x.isMeasurement (), x -> x);

// Sum of sequence of measurements: rate M*

QRe <DPatients , Double > sum =

Q.iter(Q.eps (0.0), meas , (x,y) -> x+y.getValue ());

// Length of sequence of measurements: rate M*

QRe <DPatients , Integer > count =

Q.iter(Q.eps(0), meas , (x,y) -> x+1);

// Average of sequence of measurements: rate M*

QRe <DPatients , Double > measAvg =

Q.combine(sum , count , (x,y) -> x/y);

Iterator <DPatients > stream = ... // input stream

// evaluator for the query

Eval <DPatients , Double > e = measAvg.getEval ();

// execution loop

Double output = e.start (); // returns null , if undefined

while (stream.hasNext ()) {

DPatients d = stream.next();

output = e.next(d); // returns null , if undefined

}

Figure 4. Computing the average of a nonempty sequence of measurements.

5. The StreamQRE Library in Java

StreamQRE has been implemented as a Java library [13] in order to facilitate the easy
integration with user-defined types and operations. The implementation covers all the
core constructs of Figure 2, and also provides optimizations for the derived constructs of
Section 2 (stream filtering, stream mapping, sliding windows, etc.).

Figure 4 gives a simple example that illustrates how to program with the StreamQRE
Java library. The query measAvg describes the computation of the average of a sequence
of measurements (for the patient data stream). The method getEval, which stands for
“get evaluator”, is used to obtain an object that encapsulates the evaluation algorithm for
the query. On this evaluator object, the methods start and next are used to initialize
the algorithm and consume data items respectively.

6. Conclusion

We have given an introduction to the StreamQRE language [2], a high-level formalism
for processing streaming data. The query language integrates two paradigms for pro-

gramming with streams: streaming relational languages with windowing constructs, and
state-machine-based models for pattern-matching and performing sequence-aware com-
putations. The language consists of a small but powerful core language, which has a for-
mal denotational semantics and a decidable type system. The expressiveness of the lan-
guage has been illustrated by encoding common patterns and programming significant
examples.

A query of the StreamQRE language can be compiled into a streaming algorithm
with strong efficiency guarantees [2], both for space usage and processing time per el-
ement. An experimental evaluation of StreamQRE is reported in [2], which shows that
the StreamQRE implementation is competitive with popular streaming engines such as
RxJava [26], Esper [27], and Flink [28].

Acknowledgements

We thank our collaborators Zachary Ives, Sanjeev Khanna and Mukund Raghothaman.
This research was supported by NSF Expeditions award CCF 1138996.

References

[1] R. Alur, E. Berger, A. Drobnis, L. Fix, K. Fu, G. Hager, D. Lopresti, K. Nahrstedt, E. Mynatt, S. Patel,
J. Rexford, J. Stankovic, and B. Zorn. Systems computing challenges in the Internet of Things. In
Computing Community Consortium Whitepaper, 2016.

[2] Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G. Ives, and Sanjeev Khanna.
StreamQRE: Modular specification and efficient evaluation of quantitative queries over streaming data.
2017. manuscript.

[3] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for quantitative properties
of data streams. In Proceedings of the 25th European Symposium on Programming (ESOP ’16), pages
15–40, 2016.

[4] Shivnath Babu and Jennifer Widom. Continuous queries over data streams. ACM Sigmod Record,
30(3):109–120, 2001.

[5] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: A new model and architecture for data
stream management. The VLDB Journal, 12(2):120–139, 2003.

[6] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Semantics and evalua-
tion techniques for window aggregates in data streams. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’05, pages 311–322. ACM, 2005.

[7] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query language: Semantic
foundations and query execution. The VLDB Journal, 15(2):121–142, 2006.

[8] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. High-performance complex event processing over XML
streams. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’12, pages 253–264. ACM, 2012.

[9] Mohamed Ali, Badrish Chandramouli, Jonathan Goldstein, and Roman Schindlauer. The extensibility
framework in Microsoft StreamInsight. In Proceedings of the 27th IEEE International Conference on
Data Engineering (ICDE ’11), pages 1242–1253, 2011.

[10] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Kumar, M. Mendell, H. Nasgaard,
S. Schneider, R. Soul, and K. L. Wu. IBM Streams Processing Language: Analyzing big data in motion.
IBM Journal of Research and Development, 57(3/4):7:1–7:11, 2013.

[11] Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and Martin Hirzel. Stream processing
with a spreadsheet. In Proceedings of the 28th European Conference on Object-Oriented Programming
(ECOOP ’14), pages 360–384. Springer Berlin Heidelberg, 2014.

[12] Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj Bjorner. Symbolic
finite state transducers: Algorithms and applications. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’12), pages 137–150. ACM,
2012.

[13] StreamQRE library. http://www.seas.upenn.edu/~mamouras/StreamQRE/.
[14] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark Holderbaugh, Zhuo

Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry Peng, and Paul Poulosky. Benchmarking stream-
ing computation engines: Storm, Flink and Spark streaming. In First Annual Workshop on Emerging
Parallel and Distributed Runtime Systems and Middleware, 2016.

[15] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. NEXMark: A benchmark for queries
over data streams, 2002.

[16] Brian Litt and Zachary Ives. The international epilepsy electrophysiology database. In Proceedings of
the Fifth International Workshop on Seizure Prediction, 2011.

[17] Ronald Book, Shimon Even, Sheila Greibach, and Gene Ott. Ambiguity in graphs and expressions.
IEEE Transactions on Computers, C-20(2):149–153, 1971.

[18] Richard Edwin Stearns and Harry B. Hunt III. On the equivalence and containment problems for un-
ambiguous regular expressions, regular grammars and finite automata. SIAM Journal on Computing,
14(3):598–611, 1985.

[19] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction and applications.
Communications of the ACM, 54(9):69–77, 2011.

[20] Java’s lambda expressions. https://docs.oracle.com/javase/tutorial/java/javaOO/

lambdaexpressions.html.
[21] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic regular expression explorer. In

Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST
’10), pages 498–507. IEEE, 2010.

[22] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
[23] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata. Springer,

2009.
[24] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert

de Simone. The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–83, 2003.
[25] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters. Com-

munications of the ACM, 51(1):107–113, 2008.
[26] ReactiveX: An API for asynchronous programming with observable streams. http://reactivex.

io/.
[27] Esper for Java. http://www.espertech.com/esper/.
[28] Apache Flink: Scalable batch and stream data processing. https://flink.apache.org/.

http://www.seas.upenn.edu/~mamouras/StreamQRE/
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://reactivex.io/
http://reactivex.io/
http://www.espertech.com/esper/
https://flink.apache.org/

