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Abstract. We study a propositional variant of Hoare logic that can be used for reasoning
about programs that exhibit both angelic and demonic nondeterminism. We work in an
uninterpreted setting, where the meaning of the atomic actions is specified axiomatically
using hypotheses of a certain form. Our logical formalism is entirely compositional and it
subsumes the non-compositional formalism of safety games on finite graphs. We present
sound and complete Hoare-style calculi that are useful for establishing partial-correctness
assertions, as well as for synthesizing implementations. The computational complexity of
the Hoare theory of dual nondeterminism is investigated using operational models, and it
is shown that the theory is complete for exponential time.

1. Introduction

Demonic nondeterminism is used in the context of programming to model external influ-
ences which are not under the control of the program. Such nondeterminism may arise
in concurrent programs, for example, from the scheduling of threads, which is under the
control of the operating system and not the program. Others examples could be sensor
readings or user input, which are completely external influences to a computing system. In
the case of user input, in particular, we can typically make no assumptions, since the input
depends on an entirely unpredictable and uncontrollable human being, who may choose to
behave as an adversary.

Even in the absence of “real” nondeterminacy like scheduling and sensor/user input,
we may use demonic nondeterminism to represent abstraction and partial knowledge of the
state of a computation. An example of the latter use of demonic nondeterminism is when
we cannot fully observe the value of an integer variable x, but we can tell whether it is
negative, zero, or positive. At this level of abstraction, we cannot describe the operation
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x := x+ 1 that increments the variable x by 1 deterministically.

Observe x fully

deterministic action

x 7→ x+ 1
abstraction
−−−−−−−−−→

Observe x partially

corresponding nondeterministic action

(x < 0) 7→ (x < 0) ∨ (x = 0)

(x = 0) 7→ (x > 0) and (x > 0) 7→ (x > 0)

This example illustrates that nondeterminism is necessary when creating finite-state ab-
stractions of realistic programs, whose state space is typically infinite.

Angelic nondeterminism, on the other hand, is used to express nondeterminacy that is
under the control of the program. We use angelic nondeterminism to leave some implemen-
tation details of a program underspecified. The “angel”, namely the agent that represents
our interests, controls how these details are resolved in order to achieve the desired result.
The process of resolving these implementation details amounts to synthesizing a fully spec-
ified program. The term dual nondeterminism refers to the combination of angelic and
demonic nondeterminism.

In order to reason about dual nondeterminism, one first needs to have a semantic model
of how programs with angelic and demonic choices compute. One semantic model that
has been used extensively uses a class of mathematical objects that are called monotonic
predicate transformers [BW98] (based on Dijkstra’s predicate transformer semantics [Dij75,
Mor98]). An equivalent denotational model that is based on binary relations was introduced
in [Rew03] (up-closed multirelations) and further investigated in [MCR04, MCR07, MC13].
These relations can be understood intuitively as two-round games between the angel and
the demon.

We are interested here in verifying properties of programs that can be expressed as
Hoare (partial-correctness) assertions [Flo67, Hoa69, Coo78, Apt81, Apt83], that is, formu-
las of the form {p}f{q}, where f is the program text and p, q denote predicates on the
state space, called precondition and postcondition respectively. The formula {p}f{q} as-
serts, informally, that starting from any state satisfying the precondition p, the angel has a
strategy so that whatever the demon does, the final state of the computation of f (assum-
ing termination) satisfies the postcondition q. This describes a notion of partial correctness,
because in the case of divergence (non-termination) the angel wins vacuously. Our language
for programs and preconditions/postconditions involves abstract test symbols p, q, r, . . . and
abstract action symbols a, b, . . . with no fixed interpretation. We constrain their meaning
with extra hypotheses: we consider a finite set Φ of Boolean axioms for the tests, and a
finite set Ψ of axioms of the form {p}a{q} for the action letters. So, we typically assert
implications of the form

Φ,Ψ⇒ {p}f{q},

which we call simple Hoare implications. For example, consider the tests even(n), odd(n)
and the action n++, which increments n by 1. We think that these are abstract symbols
contrained by the hypotheses Φ and Ψ below.

Φ : even(n) ∨ odd(n)

¬even(n) ∨ ¬odd(n)

Ψ : {even(n)}n++{odd (n)}

{odd(n)}n++{even(n)}

f := if even(n) then n++

else n++;n++

We should be able to prove that Φ,Ψ⇒ {true}f{odd (n)} under the above definitions. We
want to design a formal system that allows the derivation of the valid Hoare implications.
One important desideratum for such a formal system is to also provide us with program
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text that corresponds to the winning strategy of the angel. Then, the system can be used
for the deductive synthesis of programs that satisfy their Hoare specifications.

There has been previous work on deductive methods to reduce angelic nondeterminism
and synthesize winning strategies for the angel. The work [CvW03], which is based on ideas
of the refinement calculus [BvW90, BvW92, BW98, Mor98], explores a total-correctness
Hoare-style calculus to reason about angelic nondeterminism. It is observed that there
is a conceptual difficulty in reconciling nondeterministic refinement (which results from
removing demonic choices or/and adding angelic choices) with the task of synthesizing the
strategy of the angel. This is because the interaction between the angel and the demon has
been fixed in advance: we have no control over the demonic nondeterminism, and increasing
the choices of the angel is not permitted. Nonetheless, a refinement-based approach for
implementing angelic choices is pursued in [CvW03]. The analysis is in the first-order
interpreted setting, and no completeness or relative completeness results are discussed.

Of particular relevance to our investigations is the line of work that concerns two-
player infinite games played on finite graphs [Tho95]. Such games are useful for analyzing
(nonterminating) reactive programs. One of the players represents the “environment”, and
the other player is the “controller”. Computing the strategies that witness the winning
regions of the two players amounts to synthesizing an appropriate implementation for the
controller. The formalism of games on finite graphs is very convenient for developing an
algorithmic theory of synthesis. However, the formalism is non-succinct and, additionally, it
is inherently non-compositional. An important class of properties for these graph games are
the so called safety properties, which assert that the environment cannot force the play into
a “bad” region. For encoding safety properties, we see that a fully compositional formalism
based on while programs and partial-correctness properties suffices.

Our Contribution. We consider a propositionally abstracted language for while programs
with demonic and angelic choices. Our results are the following:

− We give the intended operational semantics in terms of safety games on graphs, and we
describe a denotational semantics based on a restricted subclass of multirelations. We
obtain a full abstraction result for all reasonable intepretations of the atomic symbols,
which asserts the equivalence between the operational and denotational models.

− We present a sound and unconditionally complete calculus for the weak Hoare theory of
dual nondeterminism (over the class of all interpretations). We also consider a restricted
class of interpretations, where the atomic actions are non-angelic, and we extend our
calculus so that it is complete for the Hoare theory of this smaller class (called strong
Hoare theory). The proofs of these results rely on the construction of free models.

− Using the correspondence between the operational and denotational models, we prove
that the strong Hoare theory of dual nondeterminism is EXPTIME-complete.

− We consider an extension of our Hoare-style calculus with annotations that denote the
winning strategies of the angel. We thus obtain a sound and complete deductive system
for the synthesis of angelic strategies.

− Our formalism is shown to subsume that of safety games on finite graphs, hence it
provides a compositional method for reasoning about safety in reactive systems. The
language of dually nondeterministic program schemes is exponentially more succinct
than explicitly represented game graphs, and it is arguably a more natural language for
describing algorithms and protocols.
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The present paper is a revised and extended version of [Mam15b]. We include here all
the proofs that were omitted from the conference version [Mam15b], and we generalize
the full abstraction result on the correspondence between the operational and denotational
semantics. In [Mam15b], full abstraction was established only for the free models, which are
finite. In order to generalize the full abstraction theorem to infinite models, we identify here
a natural condition on the interpretations of atomic actions (which we call chain property).
This condition covers all finite models, as well as all infinite models with a “reasonable”
interpretation of the atomic actions.

Outline of paper. In §2 we recall some well-known definitions and facts about abstract
imperative while programs, and we introduce the relevant notation that we will use in
our later development. We introduce while game schemes in §3, which are abstractions of
programs that allow both angelic and demonic nondeterministic choices. We also present
in §3 the intended operational semantics, which is based on the familiar model of two-
player safety games played on graphs. We explore in §4 a denotational model based on a
certain kind of binary relations. We show that this denotational semantics extends naturally
the standard relational semantics of programs, and additionally it agrees exactly with the
intended operational model. In §5 we introduce the syntax and meaning of Hoare assertions
and implications, and we propose a Hoare-style calculus for reasoning about while game
schemes. Our first completeness result is given in §6, where we show that the partial-
correctness calculus of §5 is complete for the weak Hoare theory (the theory over the class
of all interpretations). In §7 we study the strong Hoare theory, which is the theory over the
subclass of interpretations that assign a non-angelic meaning to the atomic actions. We
extend our calculus to completeness for this important case, and we show that the theory
is complete for EXPTIME. We further extend in §8 our axiomatization of the strong Hoare
theory with annotations that witness the angelic strategies. We thus obtain a sound and
complete Hoare-style calculus for the synthesis of angelic implementations. It is also shown
that our formalism subsumes the (non-compositional and non-succinct) formalism of safety
games on finite graphs. We analyze a simple example in §9 for a toy temperature controller,
which illustrates in a very concrete way how our verification/synthesis calculus can be used.
In §10 we discuss several related works, including the ones from which the present paper
was inspired. We conclude in §11 with a brief summary of our technical contribution, and
with suggestions for future work.

2. Preliminaries: Monadic While Program Schemes

In this section we give some preliminary definitions regarding abstract imperative programs
with while loops, which are also known in the literature as while program schemes. See
for example [Rut64, Pat68, LPP70, PH70, GL73] for some very well-known works in the
area of program schematology. The programs that we consider here are often qualified as
monadic, which means that the program state is considered to be one indivisible entity. In
other words, the program actions are modeled as unary functions that act on the entire
program state. There are no distinct program variables x, y, z, . . . at the syntactic level, nor
variable assignments z ← f(x, y) that can read from and assign to variables individually.
Instead, the primitive actions are written simply as atomic letters a, b, c, . . . that should be
thought as transforming the whole program state. Alternatively, one can think equivalently
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that there is a single program variable x (which represents the entire program state) and
an atomic action a corresponds to an assignment x← a(x).

We are interested in program schemes that allow the use of the construct ⊓ of demonic
nondeterministic choice. This is a very useful operation, because it can model underspecifi-
cation and real nondeterminism (environment, user input, and so on). First, we present the
syntax of these abstract while programs. Then, we give the standard denotational semantics
for them, which is based on binary relations.

Definition 2.1 (The Syntax of Program Schemes). We consider a two-sorted algebraic
language. There is the sort of tests and the sort of programs. The tests are built up
from atomic tests and the constants true and false, using the usual Boolean operations: ¬
(negation), ∧ (conjunction), and ∨ (disjunction). We use the letters p, q, r, . . . to range over
arbitrary tests. Tests are thus given by the grammar:

tests p, q ::= atomic test | true | false | ¬p | p ∧ q | p ∨ q.

As usual, the implication p→ q is abbreviation for ¬p∨q, and the double implication p↔ q
stands for (p→ q) ∧ (q → p).

The base programs are the atomic programs a, b, c, . . . (also called atomic actions), as
well as the constants id (skip) and ⊥ (diverge). The programs are constructed using the
operations ; (sequential composition), if (conditional), while (iteration), and ⊓ (demonic
nondeterministic choice). We write f, g, h, . . . to range over arbitrary programs. So, the
programs are given by the following grammar:

programs f, g ::= atomic actions a, b, c, . . . | id | ⊥ |

f ; g | if p then f else g | while p do f | f ⊓ g.

For brevity, we also write p[f, g] instead of if p then f else g, and wpf instead of while p do f .

In order to give meaning to these abstract while programs, we first need to specify a
nonempty set S representing the state space. Additionally, we need to know how the atomic
actions a, b, c, . . . transform the program state, and which states satisfy an atomic test p. So,
for every atomic test we are given a subset R(p) ⊆ S of the states that satisfy p. Moreover,
for every action a assume that we are given a function R(a) : S → ℘S, where ℘S is the
powerset of S. If u and v are states in S with v ∈ R(a)(u), then we understand this as
saying that: executing the action a when in state u may result in a final state v. It remains
now to describe how an arbitrary program scheme computes. The intended semantics is
operational and it gives us all the intermediate steps of the computation. A configuration
is a pair (u, f) of a state u and a program f and → is a relation on configurations that
describes one step of the computation. A configuration (u, id) is final, which means that the
computation halts. We see in Figure 1 the standard definition of the computation relation,
where we have assumed w.l.o.g. that ; is associative.

The operational semantics of Figure 1 describes fully how a program executes, but for
our later logical investigation this description carries too much irrelevant information. We
would instead like to focus on the input-output behavior of a program f . We thus summarize
the meaning of f as a function R(f) : S → ℘S, which is defined as follows:

v ∈ R(f)(u)
def
⇐⇒ (u, f)→ · · · → (v, id).
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(u, a)→ (v, id), for v ∈ R(a)(u)

(u, id)→

(u,⊥)→ (u,⊥)

(u, p[f, g])→ (u, f), if u ∈ R(p)

(u, p[f, g])→ (u, g), if u /∈ R(p)

(u,wpf)→ (u, f ;wpf), if u ∈ R(p)
(u,wpf)→ (u, id), if u /∈ R(p)

(u, f ⊓ g)→ (u, f), (u, g)

(u, a;h)→ (v, id;h), for v ∈ R(a)(u)

(u, id;h)→ (u, h)

(u,⊥;h)→ (u,⊥;h)

(u, p[f, g];h)→ (a, f ;h), if u ∈ R(p)

(u, p[f, g];h)→ (a, g;h), if u /∈ R(p)

(u, (wpf);h)→ (u, f ; (wpf);h), if u /∈ R(p)
(u, (wpf);h)→ (u, id;h), if u /∈ R(p)

(u, (f ⊓ g);h)→ (u, f ;h), (α, g;h)

Figure 1: While Program Schemes: The standard operational model for the interpretation
R of atomic symbols.

The right-hand side of the above equivalence says that there is a sequence of computation
steps from the initial configuration (u, f) to the final configuration (id, v). These input-
output summaries R(f) : S → ℘S constitute the standard denotational semantics of non-
deterministic while program schemes, also known as the relational semantics of programs.
It is a very pleasant fact that the functions R(f) have a straightforward compositional def-
inition, namely by induction on the structure of f . This result is completely standard, and
it asserts that denotational equality coincides with operational equivalence. This property
is sometimes dubbed as full abstraction.

Before we give the formal denotational semantics of while program schemes, we need
to define some useful notation. In particular, we will consider an algebra of binary relations
(equivalently, their representation as “nondeterministic functions”) with operations that can
give direct meaning to the syntactic constructors of program schemes.

Definition 2.2 (Nondeterministic Functions & Operations). For a set S, we write ℘S to
denote the powerset of S. A function of type k : S → ℘S is a nondeterministic function on
S. We also use the notation k : S  S. We write k : u 7→ v to mean that v ∈ k(u). We
think informally that such a function describes only one kind of nondeterminism (for our
purposes here, demonic nondeterminism). Consider the operations of Figure 2. The choice
operation + induces a partial order ≤ on S  S given by : k ≤ ℓ iff k+ ℓ = ℓ.

Definition 2.3 (Nondeterministic Interpretation of Program Schemes). An interpretation
of the language of nondeterministic while program schemes consists of a nonempty set S,
called the state space, and an interpretation function R. The elements of S are called states,
and we will be using letters u, v, w, . . . to range over them. For a program term f , its
interpretation R(f) : S  S is a nondeterministic function on S.

The interpretation R(p) of a test p is a unary predicate on S, i.e., R(p) ⊆ S. R specifies
the meaning of every atomic test, and it extends as follows:

R(true) = S R(¬p) = ∼R(p) R(p ∧ q) = R(p) ∩R(q)

R(false) = ∅ R(p ∨ q) = R(p) ∪R(q)

where ∼ is the operation of complementation w.r.t. S, that is, ∼A = S \ A. Moreover, the
interpretation function R specifies the meaning R(a) : S  S of every atomic program. We
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(Kleisli) composition ; (k; ℓ)(u) ,
⋃

v∈k(u) ℓ(v)

Conditional (·)[−,−] P [k, ℓ](u) , k(u), if u ∈ P

P [k, ℓ](u) , ℓ(u), if u /∈ P

Binary choice + (k+ ℓ)(u) , k(u) ∪ ℓ(u)

Arbitrary choice
∑

(
∑

i∈J ki
)

(u) ,
⋃

i∈J ki(u)

Identity 1S 1S(u) , {u}

Zero 0S 0S(u) , ∅

Iteration (wh · do−) whP do k ,
∑

n≥0 Vn, where

V0 , P [0S , 1S]

Vn+1 , P [k;Vn, 1S ]

Figure 2: Semantic operations for nondeterministic functions S  S.

extend the interpretation to all program terms:

R(id) = 1S R(f ; g) = R(f);R(g) R(p[f, g]) = R(p)[R(f), R(g)]

R(⊥) = 0S R(f ⊓ g) = R(f)+R(g) R(wpf) = whR(p) doR(f)

Our definition agrees with the standard relational semantics of while schemes.

3. The Operational Semantics of Dual Nondeterminism

We extend the syntax of nondeterministic program schemes with the additional construct ⊔
of angelic (nondeterministic) choice. So, the grammar for the program terms now becomes:

programs f , g ::= actions a, b, . . . | id | ⊥ | f ; g | p[f, g] | wpf | f ⊓ g | f ⊔ g.

We call these program terms while game schemes, because they can be considered to be
descriptions of games between the angel (who controls the angelic choices) and the demon
(who controls the demonic choices). Informally, the angel tries to satisfy the specification,
while the demon attempts to falsify it.

We consider two-player games between the existential player ∃ (angel) and the universal
player ∀ (demon). The games are played on arenas of arbitrary cardinality and are of
infinite duration. If σ is a player, then ¬σ is the other player. Such games are considered
extensively in the literature for the verification of reactive systems, see for example [Tho95].
The following definition of safety games (Definition 3.1) slightly modifies the definition of
[Tho95] in order to fit our setting more naturally.

Definition 3.1 (Safety Games). A safety game is a tuple G = (V, V∃, V∀,→, E), where V is
the set of all vertices, V∃ is the set of ∃-vertices (which belong to the existential player), V∀
is the set of ∀-vertices (which belong to the universal player), V∃ and V∀ are disjoint subsets
of V , → is a binary transition relation on V , and E ⊆ V is the set of error vertices. We
use the letters u, v, w, . . . to range over vertices in V , and we write u→ v to mean that the
pair (u, v) belongs to the transition relation. We require additionally that every vertex has
a successor, and that the vertices V? = V \ (V∃ ∪ V∀) that belong to no player have exactly
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one successor. The last requirement says equivalently that if a vertex has more than one
successor, then it must belong to one of the players.

We need to introduce some terminology, which is to be understood with respect to a
specific game. A position is a finite nonempty path, and a play is an infinite path. A
u-position (u-play) is a position (play) that starts from vertex u. We say that Player ∃ wins
a play if no error vertex appears in it. Player ∀ wins if the play contains an error vertex.
A strategy for Player σ or a σ-strategy is a function that maps every position ending in a
σ-vertex u to one of the successors of u. In a memoryless or positional strategy the choice
depends only on the last vertex. So, we can represent a memoryless strategy for Player σ as
a function that maps every σ-vertex to one of its successors. We say that a path conforms
to a σ-strategy fσ if every transition from a σ-vertex in the path is the one prescribed by
the strategy fσ. A (u, fσ)-position is a u-position that conforms to the strategy fσ. We
define a (u, fσ)-play similarly. A (u, f∃, f∀)-position is a u-position that conforms to both
f∃ and f∀. A (u, f∃, f∀)-play is defined similarly. We denote by play(u, f∃, f∀) the unique
(u, f∃, f∀)-play, which is the infinite path formed by starting at vertex u and then following
the strategies f∃ and f∀ for every transition allowing more than one choice.

We say that a set of vertices U ⊆ V is σ-closed if

(i) every vertex of V? ∩ U has its unique successor in U ,
(ii) every σ-vertex of U has at least one successor in U , and
(iii) every ¬σ-vertex of U has all of its successors in U .

Definition 3.2 (Winning Regions). Given a safety game G = (V, V∃, V∀,→, E), we will
define the sets W∃ ⊆ V and W∀ ⊆ V , which partition the set V of vertices. The set W∃ is
called the winning region of Player ∃, and W∀ is the winning region of Player ∀. First, we
define the transfinite sequence (W κ

∀ )κ∈Ord of sets. We write Ord for the class of ordinals.
Informally, for an ordinal κ, the set W κ

∀ consists of the nodes from which Player ∀ can force
a visit to E in at most κ steps.

W 0
∀ , E W κ+1

∀ ,W κ
∀ ∪ {u ∈ V? | the unique successor of u is in W κ

∀ } ∪

{u ∈ V∃ | every successor of u is in W κ
∀ } ∪

{u ∈ V∀ | some successor of u is in W κ
∀ }

W λ
∀ ,

⋃

κ<λW
κ
∀ , for a limit ordinal λ

Now, we can define the winning regions of the players in terms of the above sequence:

W∀ ,
⋃

κ∈Ord
W κ

∀ W∃ , V \W∀

Notice that the sets W 0
∀ ⊆W

1
∀ ⊆ · · · ⊆W

κ
∀ ⊆ · · · form a transfinite chain w.r.t. inclusion.

Theorem 3.3 (Memoryless Determinacy). Let G = (V, V∃, V∀,→, E) be a safety game, and
W∃, W∀ be the winning regions of the two players. There is a memoryless ∃-strategy f∗∃ and
a memoryless ∀-strategy f∗∀ that witness uniformly the winning regions. That is:

(1) For every u ∈W∃ and every ∀-strategy f∀, play(u, f
∗
∃ , f∀) is won by Player ∃.

(2) For every u ∈W∀ and every ∃-strategy f∃, play(u, f∃, f
∗
∀) is won by Player ∀.

Proof sketch. The idea for Part (1) is to show that the set W∃ is ∃-closed, and therefore
Player ∃ has a memoryless strategy f∗∃ that keeps within W∃ every play starting from
a vertex of W∃. For the sake of contradiction, assume that u ∈ W∃ is a vertex which
witnesses that W∃ is not ∃-closed. There are three distinct possibilities for u:
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(i) u ∈ V? and its unique successor is in W∀, or
(ii) u ∈ V∃ and every successor of u is in W∀, or
(iii) u ∈ V∀ and some successor of u is in W∀.

Every possibility implies that u ∈ W∀, which gives the desired contradiction. So, W∃ is
indeed ∃-closed. For Part (2), the proof is based on labeling every vertex u ∈W∀ as follows:

ord(u) , the least ordinal κ such that u ∈W κ
∀ .

One can then show that Player ∀ has a strategy f∗∀ so that for every play that starts from
a vertex of W∀ the labels keep going down until eventually an error vertex is reached.

Observation 3.4 (Summarizing Safety Games). We have already discussed in §2 that a
denotational semantics is most useful when it is a faithful summarization of the intended
operational meaning. Before presenting a denotational semantics of dual nondeterminism
in §4 we will discuss here what constitutes a summarization for safety games, and what
kind of mathematical objects are useful for this purpose.

Consider a safety game (V, V∃, V∀,→, E) and recall that W∃ is the set of vertices from
which the existential player (angel) has a strategy to avoid the error vertices. We write
W∃(E) to emphasize the fact that the winning region of Player ∃ depends on which vertices
are designated as error vertices. Theorem 3.3 implies that:

If u ∈W∃(E) then the angel can keep any u-play within the non-error vertices ∼E.

Let us think about the more general situation, where the error vertices E can be varied.
We can summarize the guarantees that the angel can make with the following object:

φ , {(u,∼E) | in the game (V, V∃, V∀,→, E), the vertex u is in W∃(E)}.

Immediately from the definition of the winning regions (see Definition 3.2) we see that:

(1) The inclusion E1 ⊆ E2 implies W∀(E1) ⊆ W∀(E2) and therefore W∃(E2) ⊆ W∃(E1).
Assuming that X ⊆ Y ⊆ V we have that ∼Y ⊆ ∼X and

(u,X) ∈ φ =⇒ u ∈W∃(∼X) =⇒ u ∈W∃(∼Y ) =⇒ (u, Y ) ∈ φ.

(2) Notice that for error vertices E = ∅ we have that W∀(∅) = ∅ and hence W∃(∅) = V . It
follows that (u, V ) belongs to φ.

Both of the above properties will turn out to be crucial for our development, and they
motivate the notion of a game function given formally in Definition 4.1 of §4. For the rest
of this section, it suffices to keep in mind that the denotations of game schemes will be
binary relations from S to ℘S, where S is the state space.

In order to streamline the presentation of the operational semantics, we should make a
couple of inconsequential modifications to the language of game schemes. We restrict slightly
the syntax of program terms by eliminating the diverging ⊥ program, and by forbidding
compositions (f ; g);h that associate to the left. These are not really limitations, because
for every reasonable semantics ⊥ has to be equivalent to the infinite loop while true do id,
and (f ; g);h has to be equivalent to f ; (g;h). So, we define the syntactic categories factor
and term with the following grammars:

factor e ::= atomic program a, b, . . . | id | p[f, g] | wpf | f ⊔ g | f ⊓ g
terms f, g ::= e | e; f

According to the above definition, a term is a nonempty list of factors. We write @ for the
operation of list concatenation: e@g = e; g and (e; f)@g = e; (f@g).
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Definition 3.5 (Closure & The _ Relation On Terms). We define the closure map C(·),
which sends a program term to a finite set of program terms.

C(a) = {a, id} C(wpf) = {wpf, id} ∪ C(f)@wpf C(e; f) = C(e)@f ∪C(f)

C(id) = {id} C(f ⊕ g) = {f ⊕ g} ∪ C(f) ∪ C(g)

where ⊕ is any of the constructors ⊔, ⊓, or p[−,−]. If F is a set of terms and g is a term,
we lift the concatenation operation @ as follows: F@g = {f@g | f ∈ F}. Now, we define
the one-step reachability relation _ on program terms as follows:

a _ id a;h _ id;h

id _ id;h _ h

f ⊕ g _ f, g (f ⊕ g);h _ f@h, g@h

wpf _ f@wpf, id wpf ;h _ f@(wpf);h, id;h

The above definition of _ says, in particular, that id has no successor. The while loop wpf
has exactly two successors, namely f@wpf and id. We write _∗ to denote the reflexive
transitive closure of the relation _.

Lemma 3.6. The following hold for the closure map and the reachability relation:

(1) Let f be a program term. The cardinality of the set C(f) is linear in the size |f | of the
term f . More specifically, it holds that |C(f)| ≤ 2|f |.

(2) For terms f, f ′ and g, if f _ f ′ then f@g _ f ′@g.
(3) For terms f, f ′ and g, if f _∗ f ′ then f@g _∗ f ′@g.
(4) For terms f and g, the _-successors of f@g are contained in {g} ∪ {f ′@g | f _ f ′}.
(5) For every term f , the set C(f) contains f and is closed under _.
(6) For all terms f and f ′, if f ′ ∈ C(f) then f _∗ f ′.
(7) Let f be a program term. Then, C(f) is equal to the set {f ′ | f _∗ f ′} of terms that

are reachable from f via _.

Note : Parts (1) and (7) are the main properties that we will need later. Parts (2)–(6) are
the intermediate claims that are needed to obtain Part (7).

Proof. Part (1) can be shown by induction on the structure of f . Parts (2) and (4) are
proved with a case analysis on the form of the term f . Part (3) follows from Part (2) by
induction on the length of the _-sequence. Part (5) is shown by induction on f , making
use of Part (4). The proof of Part (6) requires an induction on f and Part (3). Part (7) is
an immediate consequence of Part (5) and Part (6).

Definition 3.7 (Operational Model for Game Schemes). Let S be a nonempty set of states,
and I be an interpretation function for the atomic tests and actions. That is, I specifies a
unary predicate I(p) ⊆ S for every atomic test p, and a binary relation I(a) ⊆ S × ℘S for
every atomic action a. Let f be a program term, and E ⊆ S be a set of error states. We
define the operational model for I, f,E, denoted GI(f,E), to be the safety game

GI(f,E) = (V, V∃, V∀,→, E × {id}), where

V = (S × C(f)) ∪ (X × C(f)) with

X = {X ⊆ S | (u,X) ∈ I(a) for some a ∈ C(f) and u ∈ S},

and the transition relation → is defined in Figure 3. Part (7) of Lemma 3.6 implies that V
is closed under→ (note that _ is the “projection” of→ to the second component). Strictly
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(u, a)→ (X, id), when (u,X) ∈ I(a)

(u, id)→

(u, p[f, g])→ (u, f), if u ∈ I(p)

(u, p[f, g])→ (u, g), if u /∈ I(p)

(u,wpf)→ (u, f@wpf), if u ∈ I(p)
(u,wpf)→ (u, id), if u /∈ I(p)

(u, f ⊔ g)→ (u, f), (u, g)

(u, f ⊓ g)→ (u, f), (u, g)

(u, a;h)→ (X, id;h), when (u,X) ∈ I(a)

(u, id;h)→ (u, h)

(u, p[f, g];h) → (a, f@h), if u ∈ I(p)

(u, p[f, g];h) → (a, g@h), if u /∈ I(p)

(u, (wpf);h)→ (u, f@(wpf);h), if u /∈ I(p)
(u, (wpf);h)→ (u, id;h), if u /∈ I(p)

(u, (f ⊔ g);h) → (u, f@h), (u, g@h)

(u, (f ⊓ g);h) → (u, f@h), (u, g@h)

(X, f)→ (v, f), where v ∈ X ⊆ S

Figure 3: While Game Schemes: Operational model for interpretation I of atomic symbols.

(0, h) 0, f ; g;h (0, id; g;h)

(0, x++; g;h)

0, g;h

1, g;h

(0, x++;h)

(0, id;h)

(1, id;h)

(1, x++;h)

(1, h)

(2, h)

(1, id)

(2, id)

f = id ⊔ x++

g = id ⊓ x++

p = (x = 0)

h = wp(f ; g)

Figure 4: Reduced operational model for the dually nondeterministic program h. The ver-
tices of the demon (angel) are indicated with rectangles (rounded rectangles).

speaking, in order for GI(f,E) to be a safety game according to Definition 3.1, we would
need to modify → so that every vertex (u, id) has a self-loop instead of being a sink, but
this would be an inconsequential modification. For the components V∃ and V∀ we put:

− The ∃-vertices V∃ ⊆ V consist of the pairs of the form (u, f ⊔ g), as well as the pairs
(u, a) and (u, a;h) for atomic program a.

− The ∀-vertices V∀ ⊆ V consist of the pairs (u, f ⊓ g), as well as the pairs (X, f) where
(u,X) ∈ I(a) for some atomic action a and state u.

We think of the pairs (u, id) as being terminal vertices, and the error vertices are E × {id}.

Example 3.8. Suppose that we want to describe a program whose state consists of a single
variable x that can take values 0, 1 or 2. The only atomic action that we consider is x++,
which assigns (x+ 1) mod 3 to the variable x. The atomic test (x = 0) checks if the value
of x is equal to 0. Consider the program

h , while (x = 0) do ((id ⊔ x++); (id ⊓ x++)).

On the right-hand side of Figure 4 we have some abbreviations for parts of the program,
and on the left-hand side we see a simplified version of the operational model. We have only
drawn the vertices that are reachable from (0, h), (1, h) and (2, h). Since the action x++
is deterministic, we have also made some simplifications such as: the transition sequence
(0, x++;h)→ ({1}, id;h)→ (1, h) has been reduced to (0, x++;h)→ (1, h).

The terminal vertices shown in Figure 4 are (1, id) and (2, id). Suppose that (2, id) is
the unique error vertex. The winning region W∀ of the demon consists of:

(2, id) (2, h) (1, x++;h) (1, g;h) (0, x++; g;h)
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u X2

X1

X3

v1
v2

v3

v4
v5

start

φ = {(u,X1), (u,X2), (u,X3)}

X1 = {v1, v2}

X2 = {v3}

X3 = {v4, v5}

Figure 5: Visualization of a two-round game between the angel and the demon, as described
by a relation φ ⊆ S×℘S. The angel moves at the circled node, the demon moves
at the boxed nodes, and the nodes with no outline are terminal.

The rest of the vertices form the winning region W∃ of the angel.

4. Denotational Semantics and Full Abstraction

In §3 we presented the syntax of while game schemes and we gave an operational model
based on two-player games on finite graphs. Because of this adversarial dynamics, the input-
output behavior can no longer be described using binary relations consisting of the possible
input-ouput pairs, as is done for usual programs (recall Definition 2.3). Instead, we will
adopt an angel-centric view, and we will record in our program denotations the predicates
that the angel can guarantee of the output. As usual, a nonempty set S represents the
abstract state space, and every test is interpreted as a unary predicate on the state space.
Every program term is now interpreted as a binary relation from S to ℘S.

Consider such a binary relation φ ⊆ S×℘S, which should be thought of as the extension
of a dually nondeterministic program. Informally, the pair (u,X) is supposed to belong to
φ when the following holds: if the program starts at state u, then the angel has a strategy
so that whatever the demon does, the final state (supposing that the program terminates)
satisfies the predicate X.

The binary relation φ ⊆ S × ℘S encodes both the choices of the angel and the demon,
and it can be understood intuitively as a two-round game. The angel moves first, and then
the demon makes the final move. The options that are available to the angel are given by
multiple pairs (u,X1), (u,X2), and so on. So, when the game starts at state u, the angel
first chooses either X1, or X2, or any of the other available options. Suppose that the angel
first chooses Xi, where (u,Xi) is in φ. Then, during the second round, the demon chooses
some final state v ∈ Xi. See Figure 5 for a visualization of this game.

When (u,X) is in φ, we understand this as meaning that that the angel can guarantee
the predicate X when we start at u. So, it is reasonable to expect that the angel also
guarantees from u any predicate that is weaker than X. In order to be consistent with
the viewpoint of partial correctness, we also want to require that the angel can guarantee
anything in the case of nontermination. Recall Observation 3.4, where we discuss how to
summarize two-player games on graphs from the perspective of what the angel can guarantee.
These considerations motivate the following definition.

Definition 4.1 (Game Functions). Let S be a nonempty set called the state space. We say
that φ ⊆ S × ℘S is a game function on S, denoted φ : S S, if it satifies:

(1) The set φ is closed upwards, which is defined to mean the following:

(u,X) ∈ φ and X ⊆ Y =⇒ (u, Y ) ∈ φ
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for every state u ∈ S and all predicates X,Y ⊆ S.
(2) Non-emptiness: For every u ∈ S there is some X ⊆ S with (u,X) ∈ φ.

Given Condition (1), we can equivalently require that (u, S) ∈ φ for every u ∈ S, instead
of having Condition (2). This essentially says that the angel always guarantees that the
output lies in the state space.

Let φ : S S be a game function. The options of the angel at a state u ∈ S, which we
denote by φ(u), is the collection of predicates

φ(u) = {X ⊆ S | (u,X) ∈ φ}.

In other words, φ(u) is the set of all predicates that the angel can guarantee from u. This
notation suggests that we can equivalently understand φ as being a function S → ℘℘S.
Indeed, the definition says that (u,X) ∈ φ iff X ∈ φ(u) for all u ∈ S and X ⊆ S.

Now, we will observe that the space of game functions is large enough to encompass
nondeterministic functions as a special case. To make this claim precise, we need to define a
lifting operation, which embeds the nondeterministic functions into the game functions. As
we will see, this is not merely an injective map, but it also commutes with the corresponding
semantic operations in these two spaces. So, the algebra of nondeterministic functions is
embedded via the lifting map into the algebra of game functions.

Definition 4.2 (Lifting & Non-Angelic Game Functions). Let S be a state space, and
k : S  S be a nondeterministic function on S. We define the lifting of k to be the game
function lift k : S S, which is given by

lift k , {(u, Y ) | u ∈ A and k(u) ⊆ Y } : S S.

This says that for every state u ∈ S and predicate Y ⊆ S: (u, Y ) ∈ lift k iff k(u) ⊆ Y . The
lifting operation is thus a mapping from the space S  S to S S.

We say that a game function φ : S  S is non-angelic if it is the lifting of a nonde-
terministic function, that is, φ = lift k for some k : S  S. Essentially, the definition says
that the angel always has exactly one minimal choice: for every u ∈ S there is exactly one
minimal predicate k(u) that the angel can guarantee.

Observation 4.3 (Demonic & Angelic Lifting). In Definition 4.2 we consider a lifting
operation from the space S  S to the space S S which interprets the nondeterminism
demonically. This works, because a nondeterministic function k : S  S records reachability
information, i.e. what the demon can achieve. So, we could call lift more descriptively the
demonic lifting operation. The question then arises of whether we can define an analogous
angelic lifting operation which interprets the nondeterminism angelically. First, we notice
that the space of nondeterministic functions S  S with the operations of Figure 2 is
inappropriate for modeling pure angelic nondeterminism. Since the angel’s goal is safety
and the angel wins in the case of nontermination of the program, the semantics should
record explicitly when the angel can force divergence. The standard relational semantics of
§2, however, is “divergence-oblivious” in the sense of suppressing the information regarding
the possibility of divergence. For example, we have that

0S + k = k for every k : S  S.

So, in order to define a reasonable angelic lifting one would have to modify the relational
semantics of §2 to record the possibility of nontermination. While this investigation would
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Composition ; (u,Z) ∈ (φ;ψ)
def
⇐⇒ there is Y ⊆ S s.t. (u, Y ) ∈ φ,

and (v, Z) ∈ ψ for every v ∈ Y .

Conditional (·)[−,−] P[φ,ψ] ,
(

φ ∩ (P × ℘S)
)

∪
(

ψ ∩ (∼P × ℘S)
)

P[φ,ψ](u) = φ(u), if u ∈ P

P[φ,ψ](u) = ψ(u), if u /∈ P

Angelic choice ⊔ φ ⊔ ψ , φ ∪ ψ

Demonic choice ⊓ φ ⊓ ψ , {(u,X ∪ Y ) | (u,X) ∈ φ and (u, Y ) ∈ ψ}

= φ ∩ ψ

Identity 1S 1S(u) , {(u,X) | u ∈ S, X ⊆ S and u ∈ X}

Zero 0S 0S(u) , S × ℘S

Iteration (wh · do−) whP doφ ,
⋂

κ∈Ord
Wκ, where

W0 , P[0S ,1S]

Wκ+1 , P[φ;Wκ,1S]

Wλ ,
⋂

κ<λWκ, for limit ordinal λ

Figure 6: Semantic operations for game functions.

be interesting mathematically, it is beyond the scope of the present paper. From a practi-
cal standpoint, distinguishing the non-angelic game functions (see Definition 4.2) is crucial
for the synthesis applications that we consider here. We have to restrict attention to pro-
grams where the atomic actions do not involve any angelic choices in order to formulate a
reasonable synthesis problem for angelic strategies. Since we are not concerned with the
implementation of demonic strategies (the choices of the demon are beyond our control!),
the definition of a reasonable angelic lifting operation is of little use here.

We list the formal definitions of the semantic operations on game functions S S in
Figure 6. As expected, the angelic choice operation ⊔ increases the options available to the
angel. The demonic choice operation ⊓ increases the options of the demon. The identity 1S
is the smallest game function that contains (u, {u}) for every state u ∈ S. Informally, this
definition says that on input u, the angel guarantees output u in the identity game. The
intuition for the definition of the zero function 0S is that when the program diverges, the
demon cannot lead the game to an error state, therefore the angel can guarantee anything.
This describes a notion of partial correctness.

Example 4.4. We will calculate now the denotation of the program h from Example 3.8.
We write S for the state space, and I for the interpretation of the atomic symbols. We
present below a table with the denotations of all subprograms of h.

p = (x = 0) f = id ⊔ x++ g = id ⊓ x++ h = wp(f ; g)

Since the options of the angel are closed upwards, it suffices to record the minimal predicates
for every state. Define P = I(p) = {0}, and we have:
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state 0S 1S I(x++) φ = I(f) ψ = I(g) φ;ψ = I(f ; g) W0 φ;ψ;W0 W1

0 ∅ {0} {1} {0} {1} {0, 1} {0, 1} {1, 2} ∅ {1} {1, 2} {1}
1 ∅ {1} {2} {1} {2} {1, 2} {1, 2} {2, 0} {1} {1, 2} {2} {1}
2 ∅ {2} {0} {2} {0} {2, 0} {2, 0} {0, 1} {2} {2} {1} {2}

where W0 = P[0S ,1S] and W1 = P[φ;ψ;W0,1S]. We leave as an exercise to the reader
to verify that W2 = P[φ;ψ;W1,1S] =W1. It follows that I(h) =W2.

We note that the definition of Figure 6 gives the while operation as a greatest fixpoint.
This is not surprising, because the semantics we consider is meant to be useful for reasoning
about safety properties. As we will see, this definition agrees with the standard least fixpoint
definition of while loops when there is only one kind of nondeterminism (Lemma 4.5 below).
More importantly, we will prove that our definition is exactly correct, becauses it agrees
with the intended operational semantics of dual nondeterminism (Theorem 4.11).

Lemma 4.5 (Lifting Commutes With The Semantic Operations). Let k and ℓ be nonde-
terministic functions on S, and P be a unary predicate on S. Then, the following hold:

lift 0S = 0S lift(k; ℓ) = (lift k); (lift ℓ) lift(P [k, ℓ]) = P[ lift k, lift ℓ]

lift 1S = 1S lift(k+ ℓ) = (lift k)⊓ (lift ℓ) lift(whP do k) = whP do (lift k)

So, the lifting map commutes with all the semantic operations of nondeterministic functions.

Proof. The cases of 0, 1, demonic choice and conditionals are straightforward and we omit
them. For the case of composition we have that:

(u,Z) ∈ lift(k; ℓ) ⇐⇒ [def. of lift]

(k; ℓ)(u) ⊆ Z ⇐⇒ [def. of ;]
⋃

v∈k(u) ℓ(v) ⊆ Z ⇐⇒ [union and ⊆]

ℓ(v) ⊆ Z for every v ∈ k(u) ⇐⇒ [for “⇒” put Y = k(u)]

∃Y ⊆ S. k(u) ⊆ Y and ℓ(v) ⊆ Z for all v ∈ Y ⇐⇒ [def. of lift]

∃Y ⊆ S. (u, Y ) ∈ lift k and (v, Z) ∈ lift ℓ for all v ∈ Y ⇐⇒ [def. of ; ]

(u,Z) ∈ (lift k); (lift ℓ).

Since u ∈ S and Z ⊆ S above are arbitrary, we have established lift(k; ℓ) = (lift k); (lift ℓ).
It remains to consider the case of whP do k. We put φ = lift k : S  S, and we recall the
definitions for the semantic iteration operations:

whP do k =
∑

κ∈Ord
Vn whP doφ =

⋂

κ∈Ord
Wκ

V0 = P [0S , 1S ] W0 = P[0S ,1S]

Vκ+1 = P [k;Vκ, 1S] Wκ+1 = P[φ;Wκ,1S]

Vλ =
∑

κ<λ Vκ, limit ordinal λ Wλ =
⋂

κ<λWκ, limit ordinal λ

It is a well-known fact that whP do k = Vω, which says that the least fixpoint closes at ω
iterations. The crucial observation now is that

Wκ = liftVκ for every ordinal κ.
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This is shown by transfinite induction on ordinals. The proof involves using the commuta-
tion results for lift (for 0, 1, conditionals, composition) that we have shown so far. Finally,

(u, Y ) ∈ lift(whP do k) ⇐⇒ (whP do k)(u) ⊆ Y

⇐⇒ (
∑

κ Vκ)(u) =
⋃

κ Vκ(u) ⊆ Y

⇐⇒ Vκ(u) ⊆ Y for every ordinal κ

⇐⇒ (u, Y ) ∈ liftVκ =Wκ for every ordinal κ

⇐⇒ (u, Y ) ∈
⋂

κWκ = whP doφ.

We have thus shown that lift(whP do k) = whP do (lift k) and the proof is complete.

Essentially, the above lemma says that the game function operations are a generalization
of the nondeterministic function operations. It is an easy exercise to show that the map lift

is injective. So, the algebra S  S with the operations of Figure 2 is embedded via lift into
the algebra S S with the operations of Figure 6.

Definition 4.6 (The Implementation Relation). Let k : S  S be a nondeterministic
function and φ : S S be a game function. We say that k implements φ if lift k ⊆ f , and
we denote this by k ⊑ φ. The definition is meant to capture the idea that k resolves (in some
possible way) the angelic nondeterminism of φ. To put it differently, the function k chooses
for every start state u an output predicate k(u) ∈ φ(u) that the angel can guarantee.

Lemma 4.7 (The Implementation Calculus). The relation ⊑ satisfies the following rules:

1A ⊑ 1A 0AB ⊑ 0AB
P ⊆ S k ⊑ φ ℓ ⊑ ψ

P [k, ℓ] ⊑ P[φ,ψ]
k ⊑ φ ℓ ⊑ ψ

k; ℓ ⊑ φ;ψ

k ⊑ φ

k ⊑ φ ⊔ ψ

ℓ ⊑ ψ

ℓ ⊑ φ⊔ ψ

k ⊑ φ ℓ ⊑ ψ

k+ ℓ ⊑ φ⊓ ψ

P ⊆ S k ⊑ φ

whP do k ⊑ whP doφ

where k, ℓ : S  S are nondeterministic functions and φ,ψ : S S are game functions.

Proof. First, we note that all the operations on game functions are monotone w.r.t. inclusion.
That is, if φ ⊆ φ′ and ψ ⊆ ψ′ then we also have:

φ;ψ ⊆ φ′;ψ′ φ ⊔ ψ ⊆ φ′ ⊔ ψ′ whP doφ ⊆ whP doφ′

P[φ,ψ] ⊆ P[φ′, ψ′] φ ⊓ ψ ⊆ φ′ ⊓ ψ′

Assume now that k ⊑ φ and ℓ ⊑ ψ, i.e., lift k ⊆ φ and lift ℓ ⊆ ψ. We obtain the inclusions

lift 1S = 1S ⊆ 1S

lift 0S = 0S ⊆ 0S

lift k ⊆ φ ⊆ φ ∪ ψ = φ ⊔ ψ

lift ℓ ⊆ ψ ⊆ φ ∪ ψ = φ⊔ ψ

lift(k; ℓ) = (lift k); (lift ℓ) ⊆ φ;ψ

lift(P [k, ℓ]) = P[ lift k, lift ℓ] ⊆ P[φ,ψ]

lift(whP do k) = whP do (lift k) ⊆ whP doφ

lift(k+ ℓ) = (lift k)⊓ (lift ℓ) ⊆ φ ⊓ ψ

using the monotonicity properties for game function operations and the fact that the lifting
operation commutes with the semantic program operations (Lemma 4.5).
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Definition 4.8 (Game Interpretation). As in the case of nondeterministic program schemes
(Definition 2.3), an interpretation of the language of while game schemes consists of a
nonempty state space S and an interpretation function I. For a program term f , its
interpretation I(f) : S S is a game function on S. The function I specifies the meaning
of every atomic test, and extends to all tests in the obvious way. Moreover, I specifies the
meaning I(a) : S S of every atomic action. It extends to all game schemes as:

I(id) = 1S I(f ; g) = I(f); I(g) I(f ⊔ g) = I(f)⊔ I(g) I(p[f, g]) = I(p)[I(f), I(g)]

I(⊥) = 0S I(f ⊓ g) = I(f)⊓ I(g) I(wpf) = wh I(p)do I(f)

We say that the game interpretation I lifts the nondeterministic interpretation R if they
have the same state space, and additionally:

(i) I(p) = R(p) for every atomic test p, and
(ii) I(a) = liftR(a) for every atomic program a.

We also say that I is the lifting of R.

Definition 4.9 (Chain Property). A decreasing chain of predicates is a transfinite sequence
(Xκ)κ∈Ord with Xκ ⊇ Xλ for ordinals κ ≤ λ. Let φ : S  S be a game function. We say
that φ satisfies the chain property if for every state u ∈ S and every decreasing chain (Yκ)κ
of predicates on S, (u, Yκ) ∈ φ for all κ implies that (u,

⋂

κ Yκ) ∈ φ.

Lemma 4.10 (Preservation of Chain Property). The following hold:

(1) Every non-angelic game function satisfies the chain property.
(2) The game functions 0S and 1S satisfy the chain property.
(3) If the game functions φ,ψ : S  S satisfy the chain property, then so do the game

functions P[φ,ψ], φ;ψ, φ⊔ ψ, φ⊓ ψ, and whP doφ, where P is a predicate on S.

Proof. The most interesting parts of the proof are showing that the operations of angelic
choice and composition preserve the chain property. We omit the rest of the proof, since
the reader can easily reconstruct it.

For the case φ ⊔ ψ of angelic choice, assume that (u, Yκ) ∈ φ ⊔ ψ for every ordinal κ.
We recall the definition φ⊔ ψ = φ ∪ ψ, which means that (u, Yκ) ∈ φ or (u, Yκ) ∈ ψ for all
κ. Define the classes O(φ) and O(ψ) of ordinals as follows:

O(φ) = {λ ∈ Ord | (u, Yλ) ∈ φ} O(ψ) = {µ ∈ Ord | (u, Yµ) ∈ ψ}

Clearly, the equality O(φ)∪O(ψ) = Ord holds. This implies that at least one of the classes
O(φ), O(ψ) has no upper bound. By symmetry, we only consider the case where O(φ) has
no upper bound, that is: for every ordinal κ there is some λ ≥ κ with λ ∈ O(φ). We extend

the subsequence (Yλ)λ∈O(φ) into a decreasing chain (Ŷλ)λ∈Ord as:

Ŷλ = Yλ′ , where λ′ = least{κ ∈ Ord | κ ≥ λ and κ ∈ O(φ)}.

In particular, if λ ∈ O(φ) then Ŷλ = Yλ. It is straightforward to verify that (Ŷλ)λ∈Ord is a

decreasing chain with (u, Ŷλ) ∈ φ for every λ ∈ Ord. Since φ satisfies the chain property,

we get that (u,
⋂

λ∈Ord
Ŷλ) ∈ φ. Finally, we observe that

⋂

κ∈Ord
Yκ =

⋂

λ∈O(f) Yλ =
⋂

λ∈Ord
Ŷλ.

This gives us the desired (u,
⋂

κ∈Ord
Yκ) ∈ φ ⊆ φ∪ψ. So, φ⊔ψ satisfies the chain property.



18 K. MAMOURAS

For the case φ;ψ of composition, we consider the decreasing chain (Zκ)κ and we assume
that (u,Zκ) ∈ (φ;ψ) for all κ. For every ordinal κ, define the collection of predicates

Yκ = {Y ⊆ S | (u, Y ) ∈ φ and (v, Zκ) ∈ ψ for all v ∈ Y .}

The assumption (u,Zκ) ∈ (φ;ψ) means that the collection Yκ is nonempty. We then define
the predicate Yκ =

⋃

Yκ and we observe that Yκ ∈ Yκ, that is:

(u, Yκ) ∈ φ and (v, Zκ) ∈ ψ for all v ∈ Yκ.

Moreover, the implications κ ≤ λ ⇒ Zκ ⊇ Zλ ⇒ Yκ ⊇ Yλ ⇒ Yκ ⊇ Yλ hold. This means
that the sequence (Yκ)κ is a decreasing chain. The third containment is justified as follows:

Y ∈ Yλ =⇒ (u, Y ) ∈ φ and (v, Zλ) ∈ ψ for all v ∈ Y

=⇒ (u, Y ) ∈ φ and (v, Zκ) ∈ ψ for all v ∈ Y

=⇒ Y ∈ Yκ.

Since φ satisfies the chain property, we obtain that (u,
⋂

κ Yκ) ∈ φ. Let us consider now an
arbitrary element v of

⋂

κ Yκ. We get that v ∈ Yκ and hence (v, Zκ) ∈ ψ for every ordinal κ.
But ψ also satisfies the chain property, which gives us that (v,

⋂

κ Zκ) ∈ ψ. We know that:

(u,
⋂

κ Yκ) ∈ φ and (v,
⋂

κ Zκ) ∈ ψ for all v ∈
⋂

κ Yκ.

This means that (u,
⋂

κ Zκ) ∈ (φ;ψ). We conclude that φ;ψ satisfies the chain property.

Theorem 4.11 (Full Abstraction). Let I be an interpretation of atomic tests as unary
predicates on a state space S and of atomic actions as game functions S  S that satisfy
the chain property. Then, for every while game scheme f , state u ∈ S and predicate Y ⊆ S
we have that: (u, Y ) ∈ I(f) iff Player ∃ (the angel) has a winning strategy from the vertex
(u, f) in the safety game GI(f,∼Y ) (recall Definition 3.7).

Proof. The proof is by induction on the structure of f .
First, we consider the case of the atomic action a. Recall that we have C(a) = {a, id}.

The start vertex for the game is (u, a). The angel has a winning strategy from (u, a) iff
there exists some predicate X such that (u,X) ∈ I(a) and X ⊆ Y .

(u, a)→ (X, id)→ (v, id), where v ∈ X

For the case of the skip program id, we have that C(id) = {id}. The start vertex for the
game is (u, id), and it is also a terminal vertex. So, the angel has a winning strategy in the
game GI(id,∼Y ) iff u ∈ Y iff (u, Y ) ∈ I(id) = 1S .

We handle now the case of the conditional p[f, g]. We have that C(p[f, g]) = {p[f, g]}∪
C(f)∪C(g). Consider a pair (u, Y ), where u ∈ I(p). The case where u ∈ I(¬p) is analogous,
and we omit it. Notice that there exists a unique transition (u, p[f, g])→ (u, f). This means
that after the transition is taken, any play in GI(p[f, g],∼Y ) is the same as a play in the
game GI(f,∼Y ). So, we obtain the equivalences:

(u,X) ∈ I(p[f, g]) ⇐⇒ (u,X) ∈ I(f) ⇐⇒

The angel has a winning strategy from (u, f) in GI(f,∼Y ) ⇐⇒

The angel has a winning strategy from (u, p[f, g]) in GI(p[f, g],∼Y ).

The cases f ⊔ g and f ⊓ g are handled using similar arguments to the ones we used for the
conditional p[f, g], and we therefore omit them.
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We will prove now the claim for the while loop wpf . Recall that C(wpf) = {wpf, id}∪
C(f)@wpf and I(wpf) =

⋂

κ∈Ord
Wκ, where the transfinite sequence Wκ is given by

W0 , I(p)[0S ,1S] Wκ+1 , I(p)[I(f);Wκ,1S] Wλ ,
⋂

κ<λWκ, limit ordinal λ

Consider the predicate Y ⊆ S, and define the transfinite sequence (Xκ)κ∈Ord as follows:

X0 = I(p) ∪ (∼I(p) ∩ Y )

Xκ+1 = {u ∈ S | u ∈ I(p) and (u,Xκ) ∈ I(f)} ∪ (∼I(p) ∩ Y )

Xλ =
⋂

κ<λXκ, for limit ordinal λ

The sequence (Xκ)κ can be defined equivalently in terms of the approximants Wκ, as the
claim below states. We also put X =

⋂

κ∈Ord
Xκ. A transfinite induction on κ establishes:

Claim. Xκ = {u ∈ S | (u, Y ) ∈Wκ} for every ordinal κ.

The above claim implies in particular that

X = {u ∈ S | (u, Y ) ∈ I(wpf)}.

Moreover, we see below that X is an “inductive invariant” for the while loop wpf .

Claim. If u ∈ I(p) and u ∈ X, then (u,X) is in I(f).

Proof. Suppose that u ∈ I(p) and u ∈ X, which implies that u ∈ Xκ+1 for every κ.
From the inductive definition of Xκ, we obtain that (u,Xκ) ∈ I(f) for every κ. Since
every interpretation I(a) for atomic action a satisfies the chain property, we obtain from
Lemma 4.10 that I(f) satisfies the chain property. It follows that (u,X) ∈ I(f).

Let us consider now the game GI(wpf,∼Y ).

− Consider a state u ∈ I(p) with u ∈ X. The previous claim says that (u,X) ∈ I(f), and
hence the I.H. gives us that the angel has a winning strategy σu in the game GI(f,∼X).
We define the ∃-strategy σ in the game GI(wpf,∼Y ) as follows: every time a vertex
(u,wpf) with u ∈ I(p) is encountered, start playing according to σu. Notice that we have
the transition (u,wpf)→ (u, f@wpf), which means that σ simulates σu on GI(f,∼X).

It follows that when the angel plays according to σ in the game GI(wpf,∼Y ) with
start vertex (u,wpf) where u ∈ X, the play will never hit an error vertex in ∼Y × {id}.
In particular, if (u, Y ) ∈ I(wpf) then u ∈ X and hence the angel has a winning strategy
from (u,wpf) in the game GI(wpf,∼Y ).

− Let U be the set of states u ∈ S for which the angel has a winning strategy from (u,wpf)
in the game GI(wpf,∼Y ). Let σ be the (w.l.o.g. memoryless, see Theorem 3.3) strategy
of Player ∃ that witnesses his winning region in the game GI(wpf,∼Y ).

Consider a state u ∈ I(p) with u ∈ U . If the angel plays according to σ in the game
GI(f,∼U), then he wins, because σ keeps the play within the winning region. The I.H.
then says that (u,U) ∈ I(f).

Claim 4.12. U ⊆ X.

Proof. It suffices to show that U ⊆ Xκ for every ordinal κ. For the base case κ = 0, the
claim U ⊆ X0 = I(p) ∪ (∼I(p) ∩ Y ) is obvious. For successor ordinals:

Xκ+1 = {u ∈ S | u ∈ I(p) and (u,Xκ) ∈ I(f)} ∪ (∼I(p) ∩ Y )

⊇ {u ∈ S | u ∈ I(p) and (u,U) ∈ I(f)} ∪ (∼I(p) ∩ Y )

⊇ {u ∈ S | u ∈ I(p) and u ∈ U} ∪ (∼I(p) ∩ Y ),

which is equal to U . The case of limit ordinals is easy.
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Suppose now that (u,wpf) is in the winning region of the angel in the game GI(wpf,∼Y ).
It follows that u ∈ U and hence u ∈ X. We thus conclude that (u, Y ) is in I(wpf).

This completes the proof for the case of the while loop wpf .
Finally, we have to deal with the case e; f of sequential composition. Recall the defini-

tions C(e; f) = C(e)@f ∪ C(f) and I(e; f) = I(e); I(f).

− Suppose that (u,Z) ∈ I(e; f). There exists Y ⊆ S with (u, Y ) ∈ I(e) and (v, Z) ∈ I(f)
for every v ∈ Y . The I.H. says that there exists a winning ∃-strategy σ for the game
GI(e,∼Y ) started at vertex (u, e). Moreover, for every v ∈ Y , there exists a winning ∃-
strategy τv for the game GI(f,∼Z) started at vertex (v, f). Now, we define the strategy
ρ for the game GI(e; f,∼Y ) as follows: start playing according to σ, and as soon as you
encounter a vertex (v, f) start playing according to τv. The ∃-strategy ρ is winning for
the angel in the game GI(e; f,∼Z) when started at (u, e; f).

− Suppose now that the angel has a (w.l.o.g. memoryless, see Theorem 3.3) winning strategy
ρ from the vertex (u, e; f) in the game GI(e; f,∼Z). Let

Y = {v ∈ S | the vertex (v, id; f) appears in some ρ-play starting from (u, e; f)}.

Then, the angel has a winning strategy from (u, e) in the game GI(e,∼Y ). Moreover,
for every v ∈ Y , the angel has a winning strategy from (v, f) in the game GI(f,∼Z).
From the I.H., it follows that (u, Y ) ∈ I(e). Moreover, for every v ∈ Y , we obtain that
(v, Z) ∈ I(f). So, (u,Z) ∈ I(e; f).

This concludes the argument for the case of composition, and the proof is thus complete.

5. A Hoare Calculus for While Game Schemes

In this section, we present formulas that are used to specify programs. The basic formulas
are Hoare assertions of the form {p}f{q}, and we also consider assertions under certain
hypotheses Φ,Ψ of a simple form. The latter formulas are called Hoare implications and
are of the form Φ,Ψ⇒ {p}f{q}. We will then continue to present our first axiomatization,
with which we derive valid Hoare implications.

Definition 5.1 (Tests and Entailment). Let I be an interpretation of the atomic tests,
which extends to all tests in the obvious way. For a test p and a state u ∈ S, we write
I, u |= p when u ∈ I(p). We read this as: “the state u satisfies p (under I)”. When I, u |= p
for every state u ∈ S, we say that I satisfies p, and we write I |= p. For a set Φ of tests,
the interpretation I satisfies Φ if it satisfies every test in Φ. We then write I |= Φ. Finally,
we say that Φ entails p, denoted Φ |= p, if I |= Φ implies I |= p for every I.

Definition 5.2 (Hoare Assertions). An expression {p}f{q}, where p and q are tests and
f is a program term, is called a Hoare assertion. The test p is called the precondition and
the test q is called the postcondition of the assertion. Informally, the formula {p}f{q} says
that when the program f starts at a state satisfying the predicate p, then the angel has a
strategy so that whatever the demon does, the final state (upon termination) satisfies the
predicate q. The Hoare assertion {p}a{q}, where a is an atomic program, is called a simple
Hoare assertion. More formally, we say that the interpretation I satisfies {p}f{q} when

I, u |= p implies that (u, I(q)) ∈ I(f)

for every state u ∈ S. We then write I |= {p}f{q}.
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Definition 5.3 (Simple Hoare Implications & Weak Hoare Theory). Let Φ be a finite set
of tests, and Ψ be a finite set of simple Hoare assertions. We call the expression

Φ,Ψ⇒ {p}f{q}

a simple Hoare implication. The tests in Φ and the simple assertions in Ψ are the hypotheses
of the implication, and the Hoare assertion {p}f{q} is the conclusion. We use the qualifier
simple for implications of the form Φ,Ψ⇒ {p}f{q}, because the hypotheses Ψ involve only
simple Hoare assertions (instead of general Hoare assertions for arbitrary programs).

Let I be an interpretation of tests and actions. We say that I satisfies the implication
Φ,Ψ ⇒ {p}f{q}, which we denote by I |= Φ,Ψ ⇒ {p}f{q}, when the following holds: If
the interpretation I satisfies every test in Φ and every assertion in Ψ, then I satisfies the
assertion {p}f{q}. An implication Φ,Ψ ⇒ {p}f{q} is valid, denoted Φ,Ψ |= {p}f{q}, if
every interpretation satisfies it. The set of all valid Hoare implications forms the weak Hoare
theory of while game schemes.

Definition 5.4 (Boolean Atoms & Φ-Consistency). Suppose that we have fixed a finite
set of atomic tests. For an atomic test p, the expressions p and ¬p are called literals for p
(positive and negative respectively). Fix an enumeration p1, p2, . . . , pk of the atomic tests.
A Boolean atom (or simply atom) is an expression ℓ1ℓ2 · · · ℓk, where every ℓi is a literal for
pi. We use lowercase letters α, β, γ, . . . from the beginning of the Greek alphabet to range
over atoms. An atom is essentially a conjunction of literals, and it can also be thought of
as a propositional truth assignment. We write α ≤ p to mean that the atom α satisfies the
test p. We denote by At the set of all atoms.

Assume that Φ is a finite set of tests. We say that an atom α is Φ-consistent if α ≤ p
for every test p in Φ. We write AtΦ for the set of all Φ-consistent atoms.

Definition 5.5 (The Free Test Interpretation). Let Φ be a finite set of tests. We define the
interpretation IΦ on tests, which is called the free test interpretation w.r.t. Φ. The state
space is the set AtΦ of Φ-consistent atoms, and every test is interpreted as a unary predicate
on AtΦ. For an atomic test p, define its interpretation

IΦ(p) , {α ∈ AtΦ | α ≤ p}

to be the set of Φ-consistent atoms that satisfy p. In fact, an easy induction on the structure
of tests proves that for every (atomic or composite) test p, IΦ(p) is equal to the set of Φ-
consistent atoms that satisfy p.

Note 5.6 (Complete Boolean Calculus). We assume that we have a complete Boolean
calculus, with which we derive judgments Φ ⊢ p, where Φ is a finite set of tests and p is a
test. This means that the statements

Φ |= p IΦ |= p IΦ(p) = AtΦ Φ ⊢ p

are all equivalent. From this we also obtain that IΦ(p) ⊆ IΦ(q) iff Φ ⊢ p→ q.

We propose now a Hoare-style calculus (Figure 7), which is used for deriving simple
Hoare implications that involve while game schemes. As we will show, the calculus of Fig-
ure 7 is sound and complete for the weak Hoare theory of while game schemes. Establishing
soundness is a relatively straightforward result. The most interesting part is the soundness
of the (loop) rule for while loops. The observation is that the loop invariant defines a “safe
region” of the game, and the angel has a strategy to keep a play within this region.
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{p}a{q} in Ψ
(hyp)

Φ,Ψ ⊢ {p}a{q}
(skip)

Φ,Ψ ⊢ {p}id{p}
(dvrg)

Φ,Ψ ⊢ {p}⊥{q}

Φ,Ψ ⊢ {p}f{q}

Φ,Ψ ⊢ {q}g{r}
(seq)

Φ,Ψ ⊢ {p}f ; g{r}

Φ,Ψ ⊢ {q ∧ p}f{r}

Φ,Ψ ⊢ {q ∧ ¬p}g{r}
(cond)

Φ,Ψ ⊢ {q}if p then f else g{r}

Φ,Ψ ⊢ {r ∧ p}f{r}
(loop)

Φ,Ψ ⊢ {r}while p do f{r ∧ ¬p}

Φ,Ψ ⊢ {p}fi{q}
(angi)Φ,Ψ ⊢ {p}f1 ⊔ f2{q}

Φ,Ψ ⊢ {p}f{q} Φ,Ψ ⊢ {p}g{q}
(dem)

Φ,Ψ ⊢ {p}f ⊓ g{q}

Φ ⊢ p′ → p Φ,Ψ ⊢ {p}f{q} Φ ⊢ q → q′
(weak)

Φ,Ψ ⊢ {p′}f{q′}

Φ,Ψ ⊢ {p1}f{q} Φ,Ψ ⊢ {p2}f{q}
(join)

Φ,Ψ ⊢ {p1 ∨ p2}f{q}

Φ,Ψ ⊢ {false}f{q} (join0)

Φ,Ψ ⊢ {p}f{true} (meet0)

Figure 7: Game Hoare Logic: A sound and complete Hoare-style calculus for while program
schemes with angelic and demonic nondeterministic choice.

Observation 5.7 (Variant Rule for Demonic Choice). We can have a slightly more flexible
form of the rule for demonic choice. The following rule is admissible:

Φ,Ψ ⊢ {p}f{q} Φ,Ψ ⊢ {p}g{r}
(dem′).

Φ,Ψ ⊢ {p}f ⊓ g{q ∨ r}

The proof that (dem′) is admissible is straightforward:

Φ,Ψ ⊢ {p}f{q} Φ ⊢ q → q ∨ r
(weak)

Φ,Ψ ⊢ {p}f{q ∨ r}

Φ,Ψ ⊢ {p}g{r} Φ ⊢ r → q ∨ r
(weak)

Φ,Ψ ⊢ {p}g{q ∨ r}
(dem).

Φ,Ψ ⊢ {p}f ⊓ g{q ∨ r}

Notice the similarity of the rule (dem′) with the definition of the semantic demonic choice
operation ⊓ in Figure 6.

Observation 5.8 (Weakening The Trivial Rules). In the Hoare-style calculus of Figure 7
we included two “trivial” axioms:

(join0)Φ,Ψ ⊢ {false}f{q}
(meet0)

Φ,Ψ ⊢ {p}f{true}

We claim that they can be weakened into the axioms
(a-join0)Φ,Ψ ⊢ {false}a{q}

(a-meet0)
Φ,Ψ ⊢ {p}a{true}

so that they apply only to atomic programs a, b, . . ., without changing the theory generated
by the calculus. The claim is that if we replace (join0) and (meet0) by the weaker axioms
(a-join0) and (a-meet0), then we can still prove (join0) and (meet0) for arbitrary terms.

Proof. Suppose that ⊢w denotes provability in the weakened proof system with (a-join0)
and (a-meet0). We claim that for every program term f and all tests p, q, it holds:

⊢w {false}f{q} and ⊢w {p}f{true}.
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It suffices to establish that ⊢w {false}f{false} and ⊢w {true}f{true}, because we have:

⊢w {false}f{false} ⊢ false→ q
(weak)

⊢w {false}f{q}

⊢w {true}f{true} ⊢ p→ true
(weak)

⊢w {p}f{true}

The proof is by induction on the structure of f . We will only give the following derivation

false ∧ p→ false {false}f{false} (I.H.)
(weak)

{false ∧ p}f{false}
(loop)

{false}wpf{false ∧ ¬p} false ∧ ¬p→ false
(weak)

{false}wpf{false}
as an illustrative example. The other cases equally straightforward and we omit them.

Theorem 5.9 (Soundness). The Hoare calculus of Figure 7 is sound.

Proof. The soundness of the proposed Hoare calculus is an immediate consequence of the
following properties that are formulated at a purely semantic level.

{P}1S{P}

{P}0S{Q}
{P}φ{Q} {Q}ψ{R}

{P}φ;ψ{R}

{Q ∩ P}φ{R} {Q ∩ ∼P}ψ{R}

{Q}P[φ,ψ]{R}

{R ∩ P}φ{R}

{R}whP doφ{R ∩ ∼P}

{P}φi{Q}

{P}φ1 ∪ φ2{Q}

{P}φκ{Q}

{P}
⋂

κ φκ{Q}

P ′ ⊆ P {P}φ{Q} Q ⊆ Q′

{P ′}φ{Q′}

{P1}φ{Q} {P2}φ{Q}

{P1 ∪ P2}φ{Q}

{∅}φ{Q}

{P}φ{S}

For predicates P,Q ⊆ S and a game function φ : S  S, we understand {P}φ{Q} as the
assertion saying that (u,Q) ∈ φ for every state u ∈ P . Establishing the above semantic
properties of game functions is a tedious but straightforward task. We will therefore only
consider here the case whP doφ and leave the rest to the reader. Recall the definition:

whP doφ =
⋂

κ∈Ord
Wκ W0 = P[0S ,1S]

Wκ+1 = P[φ;Wκ,1S] Wλ =
⋂

κ<λWκ, for limit ordinal λ

We show by transfinite induction that {R}Wκ{R ∩ ¬P}. Indeed, for the base case W0 and
for the case of the successor ordinal Wκ+1 we have the following derivations:

{R ∩ P}0S{R ∩ ∼P} {R ∩ ∼P}1S{R ∩∼P}

{R}P[0S ,1S]{R ∩ ∼P}

{R ∩ P}φ{R} (hyp.) {R}Wκ{R ∩ ∼P} (I.H.)

{R ∩ P}φ;Wκ{R ∩ ∼P} {R ∩∼P}1S{R ∩ ∼P}

{R}P[φ;Wκ,1S]{R ∩∼P}

The case Wλ of the limit ordinal λ is handled using the I.H. for each ordinal κ < λ and
the infinitary rule for

⋂

. Finally, the assertion {R}whP doφ{R ∩∼P} is shown using the
claim and the rule for infinitary intersection.
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Example 5.10. We will use the Hoare logic of Figure 7 to establish the partial-correctness
property {x = 0}h{x = 1} for the program h of Example 3.8 (recall the abbreviations f, g).

1. {x = 0}id{x = 0} [skip]

2. {x = 0}id ⊔ x++{x = 0} [1, ang]

3. {x = 0}x++{x = 1} [hypothesis]

4. {x = 0}id ⊓ x++{inv} [1, 3, dem′]

5. {x = 0}f ; g{inv} [2, 4, seq]

6. {inv ∧ (x = 0)}f ; g{inv} [5, bool, weak]

7. {inv}h{inv ∧ (x 6= 0)} [6, loop]

8. {x = 0}h{x = 1} [7, bool, weak]

{Precondition : x = 0}

// invariant inv , (x = 0) ∨ (x = 1)

while (x = 0) do

// inv ∧ (x = 0)↔ (x = 0)

id ⊔ x++

id ⊓ x++

// (x = 0) ∨ (x = 1)

{Postcondition : x = 1}

The only hypothesis for atomic symbols used in the proof is {x = 0}x++{x = 1}.

6. First Completeness Theorem: Weak Hoare Theory

We will now prove the completeness of the Hoare calculus of Figure 7 with respect to the class
of all interpretations. This means that we consider arbitrary interpretations of the atomic
programs a, b, . . . as game functions. So, the deductive system of Figure 7 is complete for the
weak Hoare theory of while game schemes. Note that this is an unconditional completeness
result (no extra assumptions about expressiveness or about the first-order theory of the
domain of computation), not a relative completeness theorem in the sense of [Coo78].

We show our result by constructing a “free” interpretation IΦΨ from the hypotheses Φ
and Ψ about the atomic symbols. We can think of this interpretation as the least restrictive
interpretation that satisfies the hypotheses. Completeness follows from the fact that the
interpretation IΦΨ characterizes the theory generated by our calculus. In other words,
everything that is true in IΦΨ is provable using our partial-correctness calculus.

Definition 6.1 (The Free Game Interpretation). Let Φ be a finite set of tests, and Ψ be a
finite set of simple Hoare assertions. We define the free game interpretation IΦΨ (w.r.t. Φ
and Ψ) to have AtΦ as state space, and to interpret the tests as IΦ (the free test interpretation
w.r.t. Φ, see Definition 5.5) does. Moreover, the interpretation IΦΨ(a) : AtΦ AtΦ of the
atomic action a is given by: for every Φ-consistent atom α,

− (α,AtΦ) ∈ IΦΨ(a), and for every subset X ( AtΦ,
− (α,X) ∈ IΦΨ(a) iff there exists {p}a{q} ∈ Ψ s.t. α ≤ p and IΦ(q) ⊆ X.

Lemma 6.2. Let Φ be a finite set of tests, and Ψ be a finite set of simple Hoare assertions.
The free game interpretation IΦΨ satisfies all formulas in Φ and Ψ.

Theorem 6.3 (Completeness). Let Φ be a finite set of tests, and Ψ be a finite set of simple
Hoare assertions. For every program term f and every Φ-consistent atom α,

(α,X) ∈ IΦΨ(f) implies that Φ,Ψ ⊢ {α}f{
∨

X}.

Proof. The proof proceeds by induction on the structure of the program term f . Recall
that we have assumed having a complete Boolean calculus (see Note 5.6).
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We begin with the base case of the skip program id. Consider an arbitrary pair (α,X)
of IΦΨ(id), where α ∈ X. Since IΦΨ(id) = 1AtΦ , we know that α ∈ X. Using the (skip)
axiom and the weakening rule, we have the derivation:

(skip)
Φ,Ψ ⊢ {α}id{α}

α ∈ X ⊆ AtΦ

Φ ⊢ α→
∨

X
(weak).

Φ,Ψ ⊢ {α}id{
∨

X}

Now, we handle the case of the always diverging program ⊥. Let (α,X) be an arbitrary
element of IΦΨ(⊥) = 0AtΦ = AtΦ × ℘AtΦ. The (dvrg) axiom gives us immediately

(dvrg).
Φ,Ψ ⊢ {α}⊥{

∨

X}

For the case of an atomic action a, consider an arbitrary pair (α,X) in IΦΨ(a). If X = AtΦ,
then we have the following derivation:

(meet0)
Φ,Ψ ⊢ {α}a{true}

IΦ(true) = AtΦ

Φ ⊢ true→
∨

AtΦ
(weak).

Φ,Ψ ⊢ {α}a{
∨

AtΦ}

Assume now that X ( AtΦ. By definition of IΦΨ(a), there exists a simple Hoare hypothesis
{p}a{q} in Ψ such that α ≤ p and IΦ(q) ⊆ X. So,

α ≤ p

Φ ⊢ α→ p

{p}a{q} in Ψ
(hyp)

Φ,Ψ ⊢ {p}a{q}

IΦ(q) ⊆ X ⊆ AtΦ

Φ ⊢ q →
∨

X
(weak).

Φ,Ψ ⊢ {α}a{
∨

X}

This concludes the proof for the case of atomic programs.
We will handle now the case f ; g of sequential composition. Let (α, Y ) be an arbitrary

pair in IΦΨ(f ; g) = IΦΨ(f); IΦΨ(g). By definition of the ; operation on game functions,
there exists X ⊆ AtΦ such that (α,X) ∈ IΦΨ(f), and (β, Y ) ∈ IΦΨ(g) for every β ∈ X. So,

(α,X) in IΦΨ(f)
(I.H.)

Φ,Ψ ⊢ {α}f{
∨

X}

(β, Y ) in IΦΨ(g)
(I.H.)

Φ,Ψ ⊢ {β}g{
∨

Y } β ∈ X
(join)

Φ,Ψ ⊢ {
∨

X}g{
∨

Y }
(seq).

Φ,Ψ ⊢ {α}f ; g{
∨

Y }

Observe in the derivation above that we may have to apply the (join) rule several times
(finitely many), because X may contain several Φ-consistent atoms.

For the case of the conditional if p then f else g, let us consider a pair (α,X) in IΦΨ(p[f, g]).
We deal with the case where α ≤ p. We obtain the following derivations:

Φ ⊢ α ∧ p→ α

(α,X) in IΦΨ(f)
(I.H.)

Φ,Ψ ⊢ {α}f{
∨

X}
(weak)

(1) Φ,Ψ ⊢ {α ∧ p}f{
∨

X}

α ≤ p

Φ ⊢ α ∧ ¬p→ false
(join0)Φ,Ψ ⊢ {false}g{

∨

X}
(weak)

(2) Φ,Ψ ⊢ {α ∧ ¬p}g{
∨

X}

...(1)
Φ,Ψ ⊢ {α ∧ p}f{

∨

X}

...(2)
Φ,Ψ ⊢ {α ∧ ¬p}g{

∨

X}
(cond)

Φ,Ψ ⊢ {α}if p then f else g{
∨

X}
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The proof for the case where α ≤ ¬p is completely analogous.
We handle now the case of the loop wpf . Let (γ,Γ) be an arbitrary pair in the game

function IΦΨ(wpf) = wh IΦ(p)do IΦΨ(f) =
⋂

iWi, where the sequence Wi is given by

W0 = IΦ(p)[0S ,1S] Wi+1 = IΦ(p)[IΦΨ(f);Wi,1S]

We do not need to consider the entire transfinite sequence (Wκ)κ∈Ord, because the space
of game functions on AtΦ is finite and hence the sequence stabilizes in a finite number of
steps. Define the sequence (Vi)i≥0 by

Vi = {α ∈ AtΦ | (α,Γ) ∈Wi}.

We give an inductive definition for (Vi)i≥0 that is equivalent to the above:

V0 = {α ∈ AtΦ | (α,Γ) ∈W0}

= {α ∈ AtΦ | α ≤ p or (α ≤ ¬p and α ∈ Γ)}

= {α ∈ AtΦ | α ≤ p or α ∈ Γ}

= IΦ(p) ∪ (∼IΦ(p) ∩ Γ)

Vi+1 = {α ∈ AtΦ | (α,Γ) ∈Wi+1}

= {α ∈ AtΦ | (α ≤ p and (α,Γ) ∈ IΦΨ(f);Wi) or (α ≤ ¬p and α ∈ Γ)}

= {α ∈ AtΦ | α ≤ p and (α,Γ) ∈ IΦΨ(f);Wi} ∪ (∼IΦ(p) ∩ Γ)

= {α ∈ AtΦ | α ≤ p and (α, Vi) ∈ IΦΨ(f)} ∪ (∼IΦ(p) ∩ Γ)

The last equality above is justified by the following equivalences:

(α,Γ) ∈ IΦΨ(f);Wi ⇐⇒

∃Y . (α, Y ) ∈ IΦΨ(f), and (β,Γ) ∈Wi for every β ∈ Y

∃Y . (α, Y ) ∈ IΦΨ(f), and β ∈ Vi for every β ∈ Y

∃Y . (α, Y ) ∈ IΦΨ(f) and Y ⊆ Vi,

which is equivalent to (α, Vi) ∈ IΦΨ(f). Define the sequence (Ui)i≥0 by

U0 = {α ∈ AtΦ | α ≤ ¬p and α /∈ Γ}

= ∼IΦ(p) ∩∼Γ

Ui+1 = U0 ∪ {α ∈ AtΦ | α ≤ p and ∀Y with (α, Y ) ∈ IΦΨ(f): Y ∩ Ui 6= ∅}

Intuitively, the set Ui gives us the atoms from which the demon can force the execution
towards the “error states” U0 in at most i iterations of the loop.

Claim. For every i ≥ 0, it holds that Vi = ∼Ui = AtΦ \ Ui.

Now, we define U =
⋃

i≥0 Ui and V =
⋂

i≥0 Vi. The above claim implies that V = ∼U .

Moreover, since IΦΨ(wpf) =
⋂

iWi, it is easy to see that

V = {α ∈ AtΦ | (α,Γ) ∈ IΦΨ(wpf)}.

Our hypothesis (γ,Γ) ∈ IΦΨ(wpf) then gives us that γ ∈ V .

Claim. If α ≤ p and α ∈ V , then (α, V ) is in IΦΨ(f).
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So, we have the following derivations, where the first one is for an arbitrary Φ-consistent
atom α ∈ V ∩ IΦ(p):

Φ ⊢ (
∨

V ) ∧ p→
∨

(V ∩ IΦ(p))

(α, V ) in IΦΨ(f)
(I.H.)

Φ,Ψ ⊢ {α}f{
∨

V } α ∈ V ∩ IΦ(p)
(join)

Φ,Ψ ⊢ {
∨

(V ∩ IΦ(p))}f{
∨

V }

Φ,Ψ ⊢ {(
∨

V ) ∧ p}f{
∨

V }
(loop)

(1) Φ,Ψ ⊢ {
∨

V }while p do f{(
∨

V ) ∧ ¬p}

γ ∈ V

Φ ⊢ γ → r

... r ,
∨

V
(1)

Φ,Ψ ⊢ {r}wpf{r ∧ ¬p}
V ∩ ∼IΦ(p) = Γ ∩ ∼IΦ(p)

Φ ⊢ r ∧ ¬p→
∨

Γ

Φ,Ψ ⊢ {γ}while p do f{
∨

Γ}

The last deduction step is done using the weakening rule.
For angelic choice f ⊔ g, let (α,X) be a pair in IΦΨ(f ⊔ g) = IΦΨ(f)⊔ IΦΨ(g), which is

equal to IΦΨ(f) ∪ IΦΨ(g). We assume that (α,X) is in IΦΨ(f).

(α,X) in IΦΨ(f)
(I.H.)

Φ,Ψ ⊢ {α}f{
∨

X}
(ang1).Φ,Ψ ⊢ {α}f ⊔ g{

∨

X}

The case of (α,X) ∈ IΦΨ(g) is handled analogously.
For demonic choice f ⊓ g, let (α,X ∪ Y ) be a pair in IΦΨ(f ⊓ g) = IΦΨ(f) ⊓ IΦΨ(g),

where (α,X) ∈ IΦΨ(f) and (α, Y ) ∈ IΦΨ(g). We obtain the derivation:

(α,X) in IΦΨ(f)
(I.H.)

Φ,Ψ ⊢ {α}f{
∨

X}

X ⊆ X ∪ Y ⊆ AtΦ

Φ ⊢
∨

X →
∨

(X ∪ Y )
(weak)

Φ,Ψ ⊢ {α}f{
∨

(X ∪ Y )}

and similarly we also get that Φ,Ψ ⊢ {α}g{
∨

(X ∪ Y )}. Finally,

Φ,Ψ ⊢ {α}f{
∨

(X ∪ Y )} Φ,Ψ ⊢ {α}g{
∨

(X ∪ Y )}
(dem)

Φ,Ψ ⊢ {α}f ⊓ g{
∨

(X ∪ Y )}

by the rule for demonic choice, and we are done.

Corollary 6.4 (Completeness). Let Φ be a finite set of tests, and Ψ be a finite set of simple
Hoare assertions. For every program f , the following are equivalent:

(1) Φ,Ψ |= {p}f{q}.
(2) For every Φ-consistent α ≤ p, the pair (α, IΦ(q)) is in IΦΨ(f).
(3) Φ,Ψ ⊢ {p}f{q}.

Proof. For the implication (1) ⇒ (2), recall that the free interpretation IΦΨ satisfies the
hypotheses in Φ and Ψ (Lemma 6.2). So, it must be that IΦΨ satisfies {p}f{q}. For a
Φ-consistent atom with α ≤ p, we have that IΦΨ, α |= p and hence (α, IΦΨ(q)) is in IΦΨ(f).
But IΦΨ(q) = IΦ(q), and we thus conclude that (α, IΦ(q)) ∈ IΦΨ(f).
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We will prove now the implication (2) ⇒ (3). Theorem 6.3 says: (α, IΦ(q)) ∈ IΦΨ(f)
implies that Φ,Ψ ⊢ {α}f{

∨

IΦ(q)}. So, we have the following deduction

(α, IΦ(q)) in IΦΨ(f)
(Thm 6.3)

Φ,Ψ ⊢ {α}f{
∨

IΦ(q)} Φ ⊢ (
∨

IΦ(q))→ q

Φ,Ψ ⊢ {α}f{q}
for α ∈ AtΦ
with α ≤ p

(join),
Φ,Ψ ⊢ {

∨

IΦ(p)}f{q}

because IΦ(p) = {α ∈ AtΦ | α ≤ p}. Finally, notice that Φ ⊢ p →
∨

IΦ(p) and by the
weakening rule we conclude that Φ,Ψ ⊢ {p}f{q}.

The implication (3)⇒ (1) is the soundness result for our Hoare calculus, which we have
already proved in Theorem 5.9.

Corollary 6.4 gives us a decision procedure for the weak Hoare theory of dual nonde-
terminism. Given a Hoare implication Φ,Ψ ⇒ {p}f{q}, we simply have to compute the
free interpretation IΦΨ(f) ⊆ AtΦ × ℘AtΦ, which is a finite object. Observe that IΦΨ(f) is
of doubly exponential size. We will see later that, with some more work, we can devise a
faster algorithm of exponential complexity.

7. Strong Hoare Theory: Completeness and Complexity

The completeness theorem of §6 concerns the theory generated by the class of all inter-
pretations, that is, when the atomic programs are allowed to be interpreted as any game
function. However, for most realistic applications the atomic actions a, b, . . . correspond to
computational operations (e.g., variable assignments x := t, etc.) that involve no angelic
nondeterministic choice. This leads us to consider a strictly smaller class of interpretations,
and the question is raised of whether this smaller class has the same Hoare theory. This
section is devoted to the in-depth study of the theory over this subclass of interpretations.
We obtain both an unconditional completeness theorem and a complexity characterization.

Definition 7.1 (Validity Over a Class of Interpretations). We fix a language with atomic
tests and atomic actions. Let C be a class of interpretations of the atomic symbols (extending
to all tests and programs in the usual way). We say that a simple Hoare implication Φ,Ψ⇒
{p}f{q} is valid in C (or C-valid) if every interpretation I in C satisfies the implication. We
then write Φ,Ψ |=C {p}f{q}. The set of all C-validities is called the Hoare theory of C.

Let All be the class of all interpretations. Observe that an implication is valid iff it is
valid in All . Now, let Dem ⊆ All be the strict subclass of interpretations where the atomic
actions are interpreted as non-angelic game functions.

Lemma 7.2 (Soundness). The rule (meet) of Figure 8, where a is an atomic action, is
sound for the class Dem of interpretations.

Proof. Let I be an interpretation in the class Dem, which means that the game function
I(a) : S S is non-angelic. Suppose that I satisfies the premises of the rule (meet), and also
that it satisfies the hypotheses Φ and Ψ. It follows that I satisfies the assertions {p}a{q1}
and {p}a{q2}. We have to show that I also satisfies the assertion {p}a{q1 ∧ q2}. Let u be a
state with u ∈ I(p). Then, we have that (u, I(q1)) ∈ I(a) and (u, I(q2)) ∈ I(a). Since I(a)
is non-angelic, there exists a unique subset X ⊆ S such that I(a)(u) = {Y ⊆ S | X ⊆ Y }.
But I(q1) and I(q2) are both in I(a)(u), which means that X ⊆ I(q1) and X ⊆ I(q2). We
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Φ,Ψ ⊢ {p}a{q1} Φ,Ψ ⊢ {p}a{q2}
(a-meet)

Φ,Ψ ⊢ {p}a{q1 ∧ q2}

Figure 8: A rule that is sound when the atomic actions are interpretated as non-angelic
game functions. That is, (meet) is sound for the class Dem.

thus obtain that X ⊆ I(q1) ∩ I(q2) = I(q1 ∧ q2), and therefore (u, I(q1 ∧ q2)) ∈ I(a). So,
I |= {p}a{q1 ∧ q2}, and the proof is complete.

Lemma 7.2 also establishes that the Hoare theory of Dem is different from the Hoare
theory of All . Strictly more implications hold, when we restrict attention to the interpre-
tations of Dem. For example, consider the set of hypotheses Ψ, which consists of the two
simple assertions {p}a{q} and {p}a{r}, where p, q, r are distinct atomic tests. Observe that
the implication Ψ⇒ {p}a{q ∧ r} is valid in Dem (by Lemma 7.2), but it is not valid in All
(by virtue of Corollary 6.4).

Definition 7.3 (The Free Non-Angelic Interpretation). Let Φ be a finite set of tests, and Ψ
be a finite set of simple Hoare assertions. For an atomic action a, define the nondeterministic
interpretation RΦΨ(a) : AtΦ → ℘AtΦ as

RΦΨ(a)(α) , {β ∈ AtΦ | for every {p}a{q} ∈ Ψ, α ≤ p implies that β ≤ q}.

We define the free non-angelic interpretation JΦΨ (w.r.t. Φ and Ψ) to have AtΦ as state
space, and to interpret the tests as IΦ (the free test interpretation w.r.t. Φ, see Definition 5.5)
does. Moreover, the interpretation JΦΨ(a) : AtΦ AtΦ of the atomic action a is the lifting
of RΦΨ(a), that is, it is given by JΦΨ(a) = liftRΦΨ(a).

Lemma 7.4. Let Φ be a finite set of tests, and Ψ be a finite set of simple Hoare assertions.
The free non-angelic interpretation JΦΨ satisfies both Φ and Ψ.

Recall that we used the symbol ⊢ in §5 to denote provability in the Hoare-style system
of Figure 7. Now, we will use the symbol ⊢d to denote provability in the system that extends
the calculus of Figure 7 with the additional rule (meet) shown in Figure 8.

Theorem 7.5 (Completeness). Let Φ be a finite set of tests, and Ψ be a finite set of simple
Hoare assertions. For every program term f and every Φ-consistent atom α,

(α, Y ) ∈ JΦΨ(f) implies that Φ,Ψ ⊢d {α}f{
∨

Y }.

Proof. We will only consider the base case of an atomic program a. All the other cases are
handled exactly as in Theorem 6.3, so we omit them. Let α be a Φ-consistent atom. Define

X = RΦΨ(a)(α) = {β ∈ AtΦ | for all {p}a{q} ∈ Ψ: α ≤ p implies β ≤ q}

= IΦ
(
∧

Q
)

, where Q = {q | {p}a{q} ∈ Ψ and α ≤ p}.

The claim is that Φ,Ψ ⊢d {α}a{
∨

X}. If the set Q of tests (defined above) is empty, then
∧

Q = true and X = IΦ(
∧

Q) = AtΦ. We have the derivation
(meet0)

Φ,Ψ ⊢d {α}a{true} Φ ⊢ true→
∨

AtΦ
(weak).

Φ,Ψ ⊢d {α}a{true}
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Now, we can assume that Q is not empty. Using the extra rule (meet) we obtain

α ≤ p

Φ ⊢ α→ p

{p}a{q} in Ψ
(hyp)

Φ,Ψ ⊢d {p}a{q}
(weak)

Φ,Ψ ⊢d {α}a{q}

for every assertion
{p}a{q} in Ψ with
α ≤ p

(meet).
(1) Φ,Ψ ⊢d {α}a{

∧

Q}

Finally, from X = IΦ(
∧

Q) we obtain that Φ ⊢
∧

Q→
∨

X, and using the weakening rule
we conclude that Φ,Ψ ⊢d {α}a{

∨

X}.
Now, let (α, Y ) be an arbitrary pair in JΦΨ. It follows that X ⊆ Y , where X was

defined in the previous paragraph. So,

Φ,Ψ ⊢d {α}a{
∨

X}

X ⊆ Y ⊆ AtΦ

Φ ⊢
∨

X →
∨

Y
(weak)

Φ,Ψ ⊢d {α}a{
∨

Y }

and the proof is complete.

Corollary 7.6 (Completeness). Let Φ and Ψ be finite sets of tests and simple Hoare asser-
tions respectively. For every program f , the following are equivalent:

(1) Φ,Ψ |=Dem {p}f{q}.
(2) For every Φ-consistent α ≤ p, the pair (α, IΦ(q)) is in JΦΨ(f).
(3) Φ,Ψ ⊢d {p}f{q}.

Proof. Similar to the proof of Corollary 6.4.

The results so far imply that the Hoare theory of the class Dem, which we also call the
strong Hoare theory of while game schemes, can be reduced to the weak Hoare theory of the
class All (with an exponential blowup in the size of the instance). Let Φ,Ψ⇒ {p}f{q} be an
arbitrary Hoare implication. W.l.o.g. the axioms in Ψ are of the form {α}a{q}, where α is
an atom and a is an atomic action. Now, define Ψ′ to be the set of hypotheses that results
from Ψ by replacing the axioms {α}a{qi} involving α, a by a single axiom {α}a{

∧

i qi}.
The crucial observation is that the interpretation JΦΨ is the same as IΦΨ′ . Using our two
completeness results of Corollary 6.4 and Corollary 7.6, it follows that Φ,Ψ ⊢d {p}f{q} iff
Φ,Ψ′ ⊢ {p}f{q}.

Now, we will investigate the computational complexity of the strong Hoare theory of
while game schemes. We prove that this theory is complete for exponential time. In order
to obtain the EXPTIME upper bound, we consider an operational model that corresponds
to the free game interpretation. The operational model is a safety game on a finite graph,
and we can decide validity by computing the winning regions of the players. The full
abstraction result of §4 says that our denotational semantics coincides in a precise sense
to the operational semantics. The lower bound of EXPTIME-hardness is obtained with a
reduction from alternating Turing machines with polynomially bounded tapes.

Theorem 7.7 (Complexity Upper & Lower Bound). The strong Hoare theory of while game
schemes (the validities over the class Dem) is EXPTIME-complete.

Proof. We first deal with the upper bound. Let Φ be a finite set of tests, Ψ be a finite
set of simple Hoare assertions, and {p}f{q} be a Hoare assertion. We want to decide
whether the simple Hoare implication Φ,Ψ⇒ {p}f{q} is valid, equivalently, whether Φ,Ψ ⊢
{p}f{q}. Let X = IΦ(q). According to the completeness result of Corollary 6.4, we need
to check whether (α,X) ∈ JΦΨ(f) for every Φ-consistent α ≤ p. By Theorem 4.11, this is
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program , while (¬halt) do
if (Sq1 ∧ Pa1) then

take transitions from (q1, a1)

else if (Sq2 ∧ Pa2) then

take transitions from (q2, a2)...

else if (Sqm ∧ Pam) then

take transitions from (qm, am)
else id

Figure 9: While game scheme that encodes the behavior of an alternating Turing machine.

equivalent to IΦ(p) × {f} being contained in the winning region of Player ∃ in the safety
game GJΦΨ

(f,∼X). Observe in the proof of Theorem 4.11 that the full abstraction result
remains unchanged if in the safety game GJΦΨ

(f,∼X) we only consider the vertices

V = (AtΦ × C(f)) ∪ (X × C(f)), where

X = {RΦΨ(a)(α) | atomic action a ∈ C(f) and α ∈ AtΦ}.

With this modification, the game GJΦΨ
(f,∼X) is of size exponential in the size of the

input: there are exponentially many Φ-consistent atoms, and linearly many terms in C(f)
(see Part (1) of Lemma 3.6). We can compute the winning regions of GJΦΨ

(f,∼X) in time
polynomial in the size of the game. So, overall we need time exponential in the size of the
input to decide whether the implication is valid.

We can prove the lower bound by encoding the computations of polynomial-space
bounded alternating Turing machines [CKS81], since EXPTIME = APSPACE. An alter-
nating machine consists of the following components: states Q = Qand ∪ Qor (partitioned
into and-states & or-states), input alphabet Σ, tape alphabet Γ, blank symbol ∈ Γ, start
state q0, and transition relation

∆ ⊆ (Q× Γ)× (Q× Γ× {−1, 0,+1}).

We use letters q, q′, . . . to range over states, and a, b, . . . to range over alphabet symbols. A
transition 〈(q, a), (q′, b, d)〉 ∈ ∆ says that if the machine is in state q and is scanning the
symbol a, then it spawns a new process with its own copy of the tape in which the state
is set to q′, the symbol b is written over the current position, and the cursor moves by d.
If d = −1 (d = +1) the cursor moves one position to the left (right), and if d = 0 the
cursor stays in the same position. The machine accepts (rejects) if it halts at an and-state
(or-state).

The idea is to simulate the alternating machine with a while program scheme that
consists of a single while loop. The loop corresponds to the execution loop of the machine,
and the body of the loop encodes the transition and process spawning rules (see Figure 9).
Without loss of generality we can assume that every computation path halts.

We introduce atomic tests P a
i for every tape symbol a ∈ Γ and every position i. Intu-

itively, P a
i is true when the tape has symbol a at position i. The hypotheses

∧

i

∨

a P
a
i and

∧

i

∧

a6=b ¬(P
a
i ∧ P

b
j )

say that every position is associated with a unique symbol. We also have atomic tests Ci

for every position i. The test Ci is true when the cursor is scanning the i-th position of the
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tape. We require that
∨

iCi and
∧

i 6=j ¬(Ci ∧ Cj).

For every state q ∈ Q of the machine, we introduce an atomic test Sq. The test Sq is true
when the machine is in state q, so we demand:

∨

q Sq and
∧

q 6=q′ ¬(Sq ∧ Sq′).

The machine halts when it is in a state q and the cursor is scanning a symbol a so that the
pair (q, a) has no ∆-successor. In this case, we say that the pair (q, a) is a dead-end. So,
we define the abbreviations

Pa ,
∨

i(Ci ∧ P
a
i ) halt ,

∨

q, a where (q, a) is dead-end(Sq ∧ Pa)

where Pa says that the currently scanned symbol is a, and halt asserts that the machine
can take no transition. Moreover, we define the abbreviations

accept , halt ∧ (
∨

q∈Qand
Sq) reject , halt ∧ (

∨

q∈Qor
Sq)

that describe acceptance and rejection respectively in terms of the atomic tests.
The atomic program write a writes the symbol a on the tape at the position where the

cursor is, and leaves everything else unchanged. So, we take the following hypotheses for it:

{Ci}write a{P
a
i } {Ci}write a{Ci}

{Ci ∧ P
b
j }write a{P

b
j }, for j 6= i {Sq}write a{Sq}

where i, j range over all positions, b ranges over all tape symbols, and q ranges over all
machine states. The atomic program move d, where d ∈ {−1, 0, 1}, moves the cursor by d.
The tape and the machine state remain unchanged.

{Ci}move d{Ci+d} {P a
j }move d{P a

j } {Sq}move d{Sq}

where i ranges over all positions for which i+d is also a position, j ranges over all positions,
a ranges over all tape symbols, and q ranges over all machine states. Finally, we introduce
the atomic program switch q, which changes the state of the machine into q. The tape and
the cursor position remain unchanged.

{true}switch q{Sq} {Ci}switch q{Ci} {P a
i }switch q{P

a
i }

where i ranges over all positions, and a ranges over all tape symbols. Suppose that (q, a)
is a state-symbol pair that has at least one ∆-successor. If it has exactly one ∆-successor
(q′, b, d), then we define

take transitions from (q, a) , write b;move d; switch q′.

If (q, a) has exactly two ∆-successors (q1, b1, d1) and (q2, b2, d2), and q is an and-state, then
we define

take transitions from (q, a) , (write b1;move d1; switch q1)⊓

(write b2;move d2; switch q2).

In the case where (q, a) the above ∆-successors but is an or-state, we replace ⊓ by ⊔ in the
definition. The generalization to more than two ∆-successors is straightforward.

Now, we define the term program in Figure 9 that encodes the execution of the alter-
nating Turing machine. The pairs (q1, a1), . . . , (qm, am) range over the pairs (q, a) that have
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at least one ∆-successor. For an input string x1x2 · · · xn, we define the test start , which
encodes the initial configuration, as

start = Sq0 ∧ C1 ∧
(

P x1

1 ∧ · · · ∧ P
xn

n ∧ Pn+1 ∧ · · · ∧ Pπ(n)

)

,

where q0 is the start state, 1 is the start position, and π(n) is the polynomial that gives the
space bound of the machine. Since the space is bounded by a polynomial π(n), there are
polynomially many positions i. So, the size of the program is polynomial in the size of the
machine. Finally, the claim is that the machine accepts iff

Φ,Ψ |=Dem {start}program{accept},

where Φ,Ψ are the collections of our assumptions for the atomic tests and the atomic
programs respectively.

It is an immediate corollary of the above theorem that the weak Hoare theory (over the
class All) can also be decided in exponential time.

8. A Complete Hoare-style Calculus for Synthesis

We introduce in Figure 10 a Hoare-style calculus which can be used for the deductive
synthesis of ⊔-free programs that satisfy a Hoare specification. It is based on the complete
calculus for the Hoare theory of the class Dem, which contains interpretations assigning
non-angelic game functions (Definition 4.1) to the atomic programs. This is the calculus of
Figure 7 with the extra rule (a-meet) of Figure 8. The main differences are:

(i) The rules (join0) and (meet0) of Figure 7 have been weakened into the rules (a-join0)
and (a-meet0). This is inconsequential, as we have discussed in Observation 5.8.

(i) Every conclusion {p}f{q} is decorated with a ⊔-free program term t, which satisfies
the specification {p}t{q} and implements a winning strategy for the angel in the safety
game described by the assertion {p}f{q}.

Another difference that deserves mention is the introduction in Figure 10 of two new variants
(join′) and (join′′) of the standard rule (join). These rules are not necessary for completeness
and they can be omitted without breaking our theorems, but they are useful from a practical
viewpoint. The new rules (join′) and (join′′) are sound, and they allow useful shortcuts in
the deductive synthesis of ⊔-free programs.

Theorem 8.1 (Soundness). Suppose that a judgment Φ,Ψ ⊢ t : {p}f{q} is derivable using
the Hoare-style calculus of Figure 10. The following hold:

(1) Every game interpretation I in Dem satisfies the formula Φ,Ψ⇒ {p}f{q}.
(2) Every nondeterministic interpretation R satisfies Φ,Ψ⇒ {p}t{q}.
(3) Let R be a nondeterministic interpretation, and I be the game interpretation that lifts

R (see Definition 4.8). Then, liftR(t) ⊆ I(f).

Part (3) says that R(t) implements I(f), which is denoted R(t) ⊑ I(f), when I lifts R.

Proof. Part (1) follows from the soundness of the Hoare calculus of Figure 7 (Theorem 5.9)
and from Lemma 7.2 (soundness of the (a-meet) rule for interpretations in Dem). Part (2)
asserts the soundness of a Hoare calculus for nondeterministic while schemes, whose proof
can be found in [Mam14]. For Part (3), the hypothesis says that I(a) = liftR(a) for every
atomic program a, and I(p) = R(p) for every test (see Definition 4.8). We consider the
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{p}a{q} in Ψ
(hyp)

Φ,Ψ ⊢ a : {p}a{q}
(skip)

Φ,Ψ ⊢ id : {p}id{p}
(dvrg)

Φ,Ψ ⊢ ⊥ : {p}⊥{q}

Φ,Ψ ⊢ s : {p}f{q}

Φ,Ψ ⊢ t : {q}g{r}
(seq)

Φ,Ψ ⊢ s; t : {p}f ; g{r}

Φ,Ψ ⊢ s : {q ∧ p}f{r}

Φ,Ψ ⊢ t : {q ∧ ¬p}g{r}
(cond)

Φ,Ψ ⊢ p[s, t] : {q}if p then f else g{r}

Φ,Ψ ⊢ t : {r ∧ p}f{r}
(loop)

Φ,Ψ ⊢ wpt : {r}while p do f{r ∧ ¬p}

Φ,Ψ ⊢ t : {p}fi{q}
(angi)Φ,Ψ ⊢ t : {p}f1 ⊔ f2{q}

Φ,Ψ ⊢ s : {p}f{q} Φ,Ψ ⊢ t : {p}g{q}
(dem)

Φ,Ψ ⊢ s ⊓ t : {p}f ⊓ g{q}

Φ ⊢ p′ → p Φ,Ψ ⊢ t : {p}f{q} Φ ⊢ q → q′
(weak)

Φ,Ψ ⊢ t : {p′}f{q′}

Φ,Ψ ⊢ t1 : {p1}f{q} Φ,Ψ ⊢ t2 : {p2}f{q}
(join)

Φ,Ψ ⊢ p1[t1, t2] : {p1 ∨ p2}f{q}

(a-join0)

Φ,Ψ ⊢ a : {false}a{q}

Φ,Ψ ⊢ a : {p}a{q1} Φ,Ψ ⊢ a : {p}a{q2}
(a-meet)

Φ,Ψ ⊢ a : {p}a{q1 ∧ q2}

(a-meet0)

Φ,Ψ ⊢ a : {p}a{true}

Φ,Ψ ⊢ t : {p1}f{q}

Φ,Ψ ⊢ t : {p2}f{q}
(join′)

Φ,Ψ ⊢ t : {p1 ∨ p2}f{q}

Φ,Ψ ⊢ t1 : {p ∧ r}f{q}

Φ,Ψ ⊢ t2 : {p ∧ ¬r}f{q}
(join′′)

Φ,Ψ ⊢ r[t1, t2] : {p}f{q}

Figure 10: A sound and complete Hoare-style calculus for the synthesis of programs.

“projection” of the calculus of Figure 10 to judgments of the form t : f , because the rest of
the information is irrelevant.

a : a id : id ⊥ : ⊥
s : f t : g

s; t : f ; g

s : f t : g

p[s, t] : p[f, g]

t : f

wpt : wpf
t : f

t : f ⊔ g

t : g

t : f ⊔ g
s : f t : g

s ⊓ t : f ⊓ g

s : f t : f

p[s, t] : f

The claim is that for every derivable judgment t : f , we have R(t) ⊑ I(f), that is, R(φ)
implements I(f) (see Definition 4.6). Recall that R(t) ⊑ I(f) iff liftR(t) ⊆ I(a). The proof
proceeds by induction on the derivation of t : f . It is a straightforward verification, where
we make repeated use of Lemma 4.7.

Theorem 8.2 (Completeness). Let Φ and Ψ be finite sets of tests and simple Hoare asser-
tions respectively, and f be a program s.t. Φ,Ψ |=Dem {p}f{q}. Then, there exists a ⊔-free
program t such that Φ,Ψ ⊢ t : {p}f{q}.

Proof. From Corollary 7.6 we get that Φ,Ψ ⊢d {p}f{q}. From Observation 5.8 we know that
the rules (join0) and (meet0) can be weakened to (a-join0) and (a-meet0) without affecting
the provability of the implication Φ,Ψ⇒ {p}f{q}. We annotate the proof according to the
rules of Figure 10, and we conclude that Φ,Ψ ⊢ t : {p}f{q} for some ⊔-free program t.
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Finally, we will see that solving safety games on finite graphs can be reduced to deciding
the Dem-validity of a Hoare implication involving a while game scheme that simulates the
safety game. Let G = (V, V∃, V∀,→, E) be a safety game. For every vertex u ∈ V , introduce
an atomic test pu, which asserts that the token is currently on the vertex u. We take Φ to
contain the following hypotheses for the atomic tests:

∨

u∈V pu and ¬(pu ∧ pv) for all u, v ∈ V with u 6= v.

The axioms of Φ say that the token is on exactly one vertex. So, we can identify the set AtΦ
of Φ-consistent atoms with the set {pu | u ∈ V }. For every vertex u ∈ V , we introduce an
atomic action u!, which moves the token to the vertex u. So, take Ψ to contain the axioms

{true}u!{pu} for every u ∈ V .

To emphasize that Φ and Ψ depend on G, let us denote them by ΦG and ΨG respectively.
For an arbitrary vertex u ∈ V , we define the program term

(take transition from u) ,











⊔

v with u → v v!, if u ∈ V∃
d

v with u → v v!, if u ∈ V∀
v! (v unique successor of u), otherwise

Now, we define the while game scheme that describes how the safety game is played:

fG = while (
∨

{pu | u ∈ V \E}) do

if pu then (take transition from u)

else if pv then (take transition from v)

· · ·

else if pw then (take transition from w)

where u, v, . . . , w is an enumeration of the non-error vertices. Notice that our encoding
implies that a play stops as soon as an error vertex is encountered.

Theorem 8.3 (Safety Games). Let G = (V, V∃, V∀,→, E) be a finite safety game. The angel
has a winning strategy from u ∈ V iff ΦG,ΨG ⊢ {pu}fG{false}.

Proof. The idea is that Player ∃ has a winning strategy from u iff the loop never terminates.
The theorem follows immediately from the completeness result of Corollary 6.4 and the
operational/denotational correspondence shown in Theorem 4.11.

9. Example: temperature controller

We will use our language of while game schemes to encode a toy example of implementing
a temperature controller. The idea is that the controller (the angel) can set the heat-
ing/cooling system into one of three modes: heat, cool or off. We model this situation with
the following program term:

angel , (m := heat) ⊔ (m := cool) ⊔ (m := off),

where the variable m stores the current mode. The demon, on the other hand, models the
adversarial environment. In particular, he controls the spontaneous temperature changes.
We make the simplifying assumption that the temperature can only change by 1 degree
Fahrenheit at every time step. Moreover, if the mode is heat then the temperature cannot
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{Precondition : t = 68}

while (t = 67) ∨ (t = 68) ∨ (t = 69) do

// loop invariant inv :
// (t = 67) ∨ (t = 68) ∨ (t = 69) and
// (t = 67)→ (m = heat) and
// (t = 69)→ (m = cool)

if (m = heat) then (t := t+ 1) ⊓ id

else if (m = cool) then (t := t− 1) ⊓ id

else if (m = off) then (t := t+ 1) ⊓ (t := t− 1) ⊓ id

// (t = 67) ∨ (t = 68) ∨ (t = 69)

(m := heat) ⊔ (m := cool) ⊔ (m := off)

{Postcondition : false}

Φ : (t 6= 67) ∨ (t 6= 68)

(t 6= 67) ∨ (t 6= 69)

(t 6= 68) ∨ (t 6= 69)

(m = heat) ∨ (m = cool) ∨ (m = off)

(m 6= heat) ∨ (m 6= cool)

(m 6= heat) ∨ (m 6= off)

(m 6= cool) ∨ (m 6= off)

Ψ : {t = 67}t := t+ 1{t = 68}

{t = 68}t := t+ 1{t = 69}

{t = 69}t := t+ 1{¬ok}

{m = v}t := t+ 1{m = v}, for v = heat, cool, off

{t = 67}t := t− 1{¬ok}

{t = 68}t := t− 1{t = 67}

{t = 69}t := t− 1{t = 68}

{m = v}t := t− 1{m = v}, for v = heat, cool, off

{true}m := heat{m = heat}

{true}m := cool{m = cool}

{true}m := off{m = off}

{t = v}m := w{t = v},

for v = 67, 68, 69 and w = heat, cool, off

{¬ok}m := w{¬ok}, for w = heat, cool, off

Figure 11: A program modelling the interaction between a temperature controller and the
environment, and a Hoare specification for the acceptable temperature range.

decrease, and if the mode is cool then the temperature cannot increase. We model the
behavior of the environment with the term:

demon , if (m = heat) then (t := t+ 1) ⊓ id

else if (m = cool) then (t := t− 1) ⊓ id

else if (m = off) then (t := t+ 1) ⊓ (t := t− 1) ⊓ id,

where the variable t stores the current temperature. The requirement for the temperature
controller is that it keeps the temperature within the range {67, 68, 69}, expressed as

ok , (t = 67) ∨ (t = 68) ∨ (t = 69),

assuming that the initial temperature is 68 degrees Fahrenheit (20 degrees Celsius).
In Figure 11 we see the program that describes the interaction between the controller

and the environment (in discrete steps), together with a Hoare specification demanding
that the temperature is within the acceptable range. The while loop keeps executing until
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a violation of the temperature range occurs. In other words, the specification is satisfied
when the loop keeps running forever. We assume throughout that we reason under the
hypotheses Φ for atomic tests, and the hypotheses Ψ for atomic actions. The top-level
steps of the proof are:

1. (t = 68)→ inv [Φ, bool]

2. inv → ((t = 67) ∧ (m = heat)) ∨ (t = 68) ∨ ((t = 69) ∧ (m = cool)) [bool]

3. {(t = 67) ∧ (m = heat)}demon{ok} [use Φ,Ψ]

4. {t = 68}demon{ok} [use Φ,Ψ]

5. {(t = 69) ∧ (m = cool)}demon{ok} [use Φ,Ψ]

6. {inv}demon{ok} [2, 3, 4, 5]

7. {ok}angel{inv} [todo]

8. {inv}demon; angel{inv} [6, 7, seq]

9. {inv}while ok do (demon; angel){inv ∧ ¬ok} [8, loop]

10. inv ∧ ¬ok → false [bool]

11. {t = 68}while ok do (demon; angel){false} [1, 9, 10]

It remains to derive the assertion {ok}angel{inv}, which concerns the implementation of
the controller.

1. {t = 67}m := heat{inv} [use Ψ]

2. {t = 67}angel{inv} [1, ang]

3. {t = 69}m := cool{inv} [use Ψ]

4. {t = 69}angel{inv} [3, ang]

5. {t = 68}m := off{inv} [use Ψ]

6. {t = 68}angel{inv} [5, ang]

7. {(t = 69) ∨ (t = 68)}angel{inv} [4, 6, join]

8. {(t = 67) ∨ (t = 69) ∨ (t = 68)}angel{inv} [2, 7, join]

9. {ok}angel{inv} [8, bool]

If we annotate the above proof with the angelic strategies according to the synthesis calculus
of Figure 10, then the implementation for the controller becomes:

controller , if (t = 67) then m := heat

else if (t = 69) then m := cool

else m := off.

We have thus established deductively that there exists an implementation satisfying the
specification, and we have obtain a ⊔-free program that witnesses this fact.

10. Related Work

The present paper is inspired from and builds upon the closely related line of work on
the propositional fragment of Hoare logic, called Propositional Hoare Logic or PHL [Koz99,
Koz00, CK00, KT01, Tiu02]. In [Mam14] and [Mam16], a propositional variant of Hoare
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logic for mutually recursive programs is investigated. The present work differs from all this
previous work in considering the combination of angelic and demonic nondeterminism, which
presents significant new challenges for obtaining completeness and decision procedures.

The other line of work that largely motivated our investigations here is an extension of
Propositional Dynamic Logic (PDL) [Pra76, FL77, FL79], called Game Logic [Par83, Par85,
PP03]. This formalism was introduced more than 30 years ago in [Par83], but there are
still no completeness results for full Game Logic. We stress that the theory studied here is
not a fragment of Game Logic. Even though hypotheses-free Hoare assertions {p}f{q} can
be encoded in Dynamic Logic as partial correctness formulas p → [f ]q, there is no direct
mechanism for encoding the hypotheses of an implication Φ,Ψ ⇒ {p}f{q} (which would
correspond to some kind of global consequence relation in Dynamic Logic).

We have already discussed in the introduction that there have been proposals of se-
mantic models with the explicit purpose of describing the interaction between angelic and
demonic choices in programs: monotonic predicate transformers [BW98, Dij75, Mor98] and
up-closed multirelations [Rew03, MCR04, MCR07, MC13]. We should note that the latter
model of multirelations (relations from the state space S to ℘S or, equivalently, functions
S → ℘℘S) had appeared much earlier in the context of modal logic under the name of neigh-
borhood semantics or Scott-Montague semantics. See [Che80] for a textbook presentation
of this general semantics (called minimal models in [Che80]), which is useful for analyzing
non-normal modal logics. These previous works study semantic objects that are related to
our game functions. However, our definition of the algebra of game functions (in particular,
the definition of while loops in terms of greatest fixpoints) has not been studied before.
Moreover, the precise correspondence between safety games and game functions is novel.

There is an enormous amount of work on logics for the strategic interaction between
agents, such as Coalition Logic, Alternating-time Temporal Logic, Strategy Logic, and many
more. These logics are mostly inspired from modal and temporal logic [BdRV01], and they
are typically used for reasoning about strategic ability, cooperation, agent knowledge, and
so on. The recent books [vB14] and [vBGV15] contain broad surveys of the area. We know
of no previous proposal, however, that offers a succinct language for describing safety games
and (unconditionally) complete systems for reasoning about safety compositionally.

Coalition Logic (CL) [Pau02] is a multi-agent formalism that studies cooperation modal-
ities [C], where C is a subset of a set N of agents/players. A formula [C]φ is read as follows:
“the agents C can cooperate in order to guarantee outcome φ”. This language is sufficient
for describing only very simple multi-player games consisting of finitely many steps, and it
lacks a treatment of iteration.

The language of Alternating-time Temporal Logic (ATL) [AHK97, AHK02] includes
modalities of the form 〈〈C〉〉, where C is a subset of agents. The meaning of a formula
〈〈C〉〉φ is given w.r.t. a fixed multi-player game and it says that: “the agents C have a joint
strategy so that for every joint strategy of the remaining agents, the computation induced
by these strategies satisfies the linear temporal property φ”. For a fixed game, the language
of ATL is sufficient for describing safety properties. ATL cannot be used, however, for the
compositional description and specification of games. An ATL formula describes a global
property of the entire game, where the game is fixed a priori.

Strategy Logic (SL) [CHP10] is a very powerful extension of ATL that allows explicit
quantification over the strategies of the players, instead of treating the strategies implicitly
using modalities. By making strategy quantification a primitive of the language, SL can
describe interesting notions of non-zero-sum games such as Nash equilibria. Similarly to
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ATL, SL is interpreted over a single fixed game graph. Thus, the language of SL does not
offer syntax for the compositional description and analysis of complex game graphs from
simpler ones.

The work of Moggi on monads and computational effects [Mog91], where concepts
from category theory are used to structure the denotational semantics of programs, has
inspired work on program logics that are parameterized w.r.t. a monad encapsulating the
computational effects (e.g., nontermination, probabilities, nondeterminism, and so on) of
the programs. Neighborhood models and related models of dual nondeterminism have
been shown to give rise to monads. A generic monadic framework for weakest precondition
semantics is studied in [Has15], and a relatively complete monadic Hoare logic is proposed in
[GS13]. As far as we know, none of the works in this line of research provides an operationally
justified semantics for dual nondeterminism nor an unconditional completeness result.

11. Discussion & Conclusion

We have considered here the weak (over the class All) and the strong (over the subclass Dem)
Hoare theories of dual nondeterminism, and we have obtained sound and unconditionally
complete Hoare-style calculi for both of them. We have also shown that both theories can be
decided in exponential time, and that the strong Hoare theory is EXPTIME-hard. Finally,
we have extended our proof system so that it constructs program terms for the strategies
of the angel, thus obtaining a sound and complete calculus for synthesis.

To the best of our knowledge, the present results are the first completeness theorems for
logics of while programs that support dual nondeterminism. Handling the case of iteration
in the presence of both angelic and demonic nondeterminism requires a careful treatment,
since we generally need transfinitely many iterations for the loop approximants. In order
to gain confidence that the employed semantics is indeed meaningful, we have shown that
it agrees exactly with the intended operational model (based on safety games).

There is still much progress to be made in the problem of axiomatizing Game Logic
[Par83] or a reasonable variation of it (possibly using a restricted class of models and a
different syntax for programs). It also remains an interesting challenge to give equational
axiomatizations for dual nondeterminism and iteration in the style of Kleene algebra [Koz94]
and Kleene algebra with tests [Koz97]. For practical applications such equational theories
would need to accommodate additional hypotheses for the domain of computation [KM14,
GKM14, Mam15a], similarly to the use of hypotheses Φ and Ψ in our calculi. We hope
that the present work will inspire progress for the aforementioned and other related open
problems.

Acknowledgement

The author would like to thank the anonymous referees for their very helpful comments.

References

[AHK97] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS ’97),
pages 100–109, 1997.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49(5):672–713, 2002.



40 K. MAMOURAS

[Apt81] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey – Part I. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 3(4):431–483, 1981.

[Apt83] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey – Part II: Nondeterminism. Theoretical
Computer Science, 28(1):83–109, 1983.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

[BvW90] Ralph-Johan R. Back and Joakim von Wright. Duality in specification languages: A lattice-
theoretical approach. Acta Informatica, 27(7):583–625, 1990.

[BvW92] Ralph-Johan R. Back and Joakim vonWright. Combining angels, demons and miracles in program
specifications. Theoretical Computer Science, 100(2):365–383, 1992.

[BW98] Ralph-Johan Back and Joakim Wright. Refinement Calculus: A Systematic Introduction. Springer
Heidelberg, 1998.

[Che80] Brian F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.
[CHP10] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. Information

and Computation, 208(6):677–693, 2010.
[CK00] Ernie Cohen and Dexter Kozen. A note on the complexity of propositional Hoare logic. ACM

Transactions on Computational Logic, 1(1):171–174, 2000.
[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the

Association for Computing Machinery, 28(1):114–133, 1981.
[Coo78] Stephen A. Cook. Soundness and completeness of an axiom system for program verification. SIAM

Journal on Computing, 7(1):70–90, 1978.
[CvW03] Orieta Celiku and Joakim von Wright. Implementing angelic nondeterminism. In Tenth Asia-

Pacific Software Engineering Conference, pages 176–185, 2003.
[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM, 18(8):453–457, 1975.
[FL77] Michael J. Fischer and Richard E. Ladner. Propositional modal logic of programs. In Proceedings

of the Ninth Annual ACM Symposium on Theory of Computing (STOC ’77), pages 286–294,
1977.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211, 1979.

[Flo67] Robert W. Floyd. Assigning meanings to programs. InMathematical Aspects of Computer Science,
Proceedings of AMS Symposium in Applied Mathematics, volume 19, pages 19–32, 1967.

[GKM14] Niels Bjørn Bugge Grathwohl, Dexter Kozen, and Konstantinos Mamouras. KAT + B! In Proceed-
ings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS), CSL-LICS ’14, pages 44:1–44:10, 2014.

[GL73] Stephen J. Garland and David C. Luckham. Program schemes, recursion schemes, and formal
languages. Journal of Computer and System Sciences, 7(2):119–160, 1973.
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