
Equational Theories of Abnormal Termination
Based on Kleene Algebra

Konstantinos Mamouras(B)

University of Pennsylvania, Philadelphia, USA
mamouras@seas.upenn.edu

Abstract. We study at an abstract level imperative while programs with
an explicit fail operation that causes abnormal termination or irrepara-
ble failure, and a try-catch operation for error handling. There are two
meaningful ways to define the semantics of such programs, depending on
whether the final state of the computation can be observed upon failure
or not. These two semantics give rise to different equational theories. We
investigate these two theories in the abstract framework of Kleene algebra,
and we propose two simple and intuitive equational axiomatizations. We
prove very general conservativity results, from which we also obtain decid-
ability and deductive completeness of each of our calculi with respect to
the intended semantics.

1 Introduction

The computations of imperative programs are typically divided into two dis-
tinct categories: those that terminate normally at some final state (thus possibly
yielding an output), and those that do not terminate or, as we say, that diverge.
However, for most realistic programs there is also the possibility of failure, which
has to be distinguished from normal termination. When we say failure here, we
are referring to the computational phenomenon where an executing program
has to stop immediately because something “bad” has happened that prevents
it from continuing with its computation. There are numerous examples of such
behavior: a memory access error, a division by zero, the failure of a user-defined
assertion, and so on. Depending on the context, this kind of irreparable failure
is described with various names: abnormal or abrupt termination, (uncaught)
exception, program crash, etc.

An important point to be made is that when failure is a possibility there are
two different (both very meaningful) ways of defining semantics, depending on
whether the final state of the computation can be observed upon failure or not.
Let us consider a standard way of describing the intended input-output behavior
of imperative programs by describing how they execute on an idealized machine.
This is the so called operational semantics, and it amounts to giving a detailed
description of the individual steps of the computation as it mutates the program
state. In our setting, where failure is a possibility, a computation of the program
f can take one of the following three forms:

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 88–105, 2017.
DOI: 10.1007/978-3-662-54458-7 6

Equational Theories of Abnormal Termination Based on Kleene Algebra 89

normal termination: 〈x, f〉 → 〈x′, f ′〉 → · · · → 〈y, 1〉
divergence: 〈x, f〉 → 〈x′, f ′〉 → · · ·

abnormal termination: 〈x, f〉 → 〈x′, f ′〉 → · · · → 〈y, fail(e)〉

The letters x, x′, y above represent entire program states, the constant 1 rep-
resents the program that immediately terminates normally, and the constant
fail(e) represents the program that immediately terminates abnormally with
error code (exception) e. We summarize the input-output behavior of the pro-
gram f by including the pair x �→ 〈y, 1〉 when the normally terminating com-
putation 〈x, f〉 → · · · → 〈y, 1〉 is possible, and the pair x �→ 〈y, fail(e)〉 when
the abnormally terminating computation 〈x, f〉 → · · · → 〈y, fail(e)〉 is possible.
Thus, the meaning or denotation of a program f that computes by transforming
a state space X is given by a function of type X → P (X ⊕ (X × E)), where P
denotes the powerset functor, E is the set of error codes (exceptions), and ⊕ is
the coproduct (disjoint union) operation. Intuitively, using this semantics we are
able to observe the final state of the computation upon abnormal termination.
However, it may sometimes be appropriate to disregard the final state when the
program fails. In this latter case, the meaning of the program is given by a func-
tion of type X → P (X ⊕ E). Informally, our second semantics is derived from
the first one by “forgetting” the final state in the case of failure. To sum this up:

Final state observable upon failure: X → P (X ⊕ (X × E))
Final state not observable upon failure: X → P (X ⊕ E)

In both cases, the powerset functor P allows us to accomodate nondeterminism.
That is, when a program starts at some state, there may be several possible
computations and we want to record all their possible outcomes.

These two different ways of assigning meaning to programs that we described
in the previous paragraph give rise to two distinct notions of equivalence .
Let us write f ≡ g if the programs f and g have the same meaning under the first
semantics involving functions X → P (X ⊕ (X × E)). We write ∼∼∼ to denote the
equivalence induced by the semantics involving functions X → P (X ⊕ E). An
immediate observation is that the equivalence ≡ is finer than ∼∼∼, which means
that f ≡ g implies f ∼∼∼ g. In fact, ≡ is strictly finer than ∼∼∼, because:

x := 0; fail(e) 	≡ x := 1; fail(e) x := 0; fail(e) ∼∼∼ x := 1; fail(e)

where ; is the sequential composition operation. The programs x := 0; fail(e)
and x := 1; fail(e) both terminate abnormally at states with x = 0 and x = 1
respectively. When the final states can be observed, the two programs can be
differentiated by looking at the final value of the variable x. But, when the final
states are unobservable, then the programs are semantically the same.

We are interested here in axiomatizing completely the two equational theories
given by the equivalences ≡ and ∼∼∼. Of course, this endeavor is not possible for
typical interpreted programming languages that are Turing-complete. For such
languages the equational theories are not recursively enumerable, and hence

90 K. Mamouras

they admit no complete effective axiomatization. We will therefore work in a
very abstract uninterpreted setting, where the building blocks of our imperative
programming language are abstract actions a, b, c, . . . with no fixed interpreta-
tion. This is the setting of Kleene algebra (KA) [12] and Kleene algebra with
tests (KAT) [13], whose language includes the following program structuring
operations: sequential composition ·, nondeterministic choice +, and nondeter-
ministic iteration ∗. KAT involves a special syntactic category of tests p, q, r, . . .,
which can model the guards of conditionals and while loops:

if p then f else q � p · f + ¬p · g while p do f � (p · f)∗ · ¬p

It is therefore sufficient to consider the language of KAT for logical investigations
that concern imperative nondeterministic programs with while loops.

If failure is not a possibility, then the axioms of KA and KAT are very well
suited for abstract reasoning about programs. However, if failure is possible then
the property f ·0 = 0, which is an axiom of KA, is no longer valid . The constant
0 denotes the program that always diverges, and we expect:

fail(e) · 0 = fail(e) fail(e) · 0 	= 0

This suggests that, in order to reason conveniently about programs that can
fail, we need to enrich the syntax of KAT and capture the essential properties
of the fail operation. As a first step, we introduce the simplest type discipline
necessary by distinguishing the programs that contain no occurrence of fail. In
algebraic jargon, this is a two-sorted approach: we consider a sub-sort of fail-free
programs in addition to the sort of all programs. The basic algebraic theory that
we propose, which we call FailKAT, differs from KAT by weakening the axiom
f · 0 = 0 and by introducing just one extra equation for fail(e):

f · 0 = 0, where f is a fail-free program
fail(e) · f = fail(e), where f can be any program

As we shall see, these modifications are exactly what is needed to reason about
failure (for the ≡ equivalence). They are absolutely necessary, and they intro-
duce no additional syntactic complications than what is strictly required. Even
more interestingly, we can axiomatize the coarser ∼∼∼ equivalence by adding to
the FailKAT calculus just one more equational axiom (The partial order ≤ is
defined in every KA in terms of nondeterministic choice as follows: x ≤ y iff
x + y = y. See, for example, [12].):

f · fail(e) ≤ fail(e), where f is a fail-free program.

Let us call this extended calculus FailTKAT. The above property has a straight-
forward intuitive explanation. When we are disallowed to observe the final state
upon failure, then any program that we execute before failing has no observable
effect other than possibly causing divergence (hence we have ≤ instead of =).

Equational Theories of Abnormal Termination Based on Kleene Algebra 91

i := 0

while (i < n) do
assert (0 ≤ i) ∧ (i < X.length)
X[i] := 0

i := i + 1

≡ i := 0

while (i < n) do
if (i ≥ X.length) then fail
X[i] := 0

i := i + 1

(i := 0) ≡ (i := 0); (i ≥ 0) (i ≥ 0); (X[i] := 0) ≡ (X[i] := 0); (i ≥ 0)

¬(i < X.length) ≡ (i ≥ X.length) (i ≥ 0); (i := i + 1) ≡ (i ≥ 0); (i := i + 1); (i ≥ 0)

Fig. 1. The logical system FailKAT can be used for verifying program optimizations.

We further enrich the language with a try-catch construct for exception han-
dling. The operational semantics that we consider is the standard one used in
imperative programming languages:

〈x, f〉 → 〈x′, f ′〉
〈x, try f catch(e) g〉 → 〈x′, try f ′ catch(e) g〉

〈x, try 1 catch(e) g〉 → 〈x, 1〉
〈x, try fail(e) catch(e) g〉 → 〈x, g〉

〈x, try fail(d) catch(e) g〉 → 〈x, fail(d)〉, when d 	= e

As we will prove, the following five equational axioms

try 1 catch(e) g = 1
try fail(d) catch(e) g = fail(d), when d 	= e

try fail(e) catch(e) g = g

try (f + g) catch(e)h = (try f catch(e)h) + (try g catch(e)h)
try (f · g) catch(e)h = f · (try g catch(e)h), when f is fail-free

are sufficient to derive all the algebraic properties of the try-catch construct.
We note that fail and try-catch can also be used to model several other useful
non-local control flow constructs, such as break, continue and return.

The problem of axiomatizing the algebraic properties of the try . . . catch(e) . . .
and fail(e) constructs is more than of purely mathematical interest. There are sev-
eral useful program optimizations that concern user-defined assertions and state-
ments that can cause failure. FailKAT can offer a formal compositional approach
to the verification of such program optimizations. For example, in Fig. 1 we see
a valid program optimization that simplifies a user-defined assertion, where the
statement assert p is syntactic sugar for if p then 1 else fail. The optimization is
expressed as an equation, and it can be formally proved correct using FailKAT
and some additional equations (see bottom of Fig. 1) that encode the relevant
properties of the domain of computation. Reasoning in KA and KAT under the
presence of additional equational hypotheses is studied in [17,24]. Our results here
are general enough to apply to this setting.

Our contribution. We study within the framework of Kleene algebra with tests
[13] an explicit fail operation, which is meant to model the abnormal termination

92 K. Mamouras

of imperative sequential programs, and a try-catch construct for handling excep-
tions. Our main results are the following:

– We show that every Kleene algebra with tests K can be extended conserv-
atively with a family of fail(e) constants and try . . . catch(e) . . . operations,
where e ranges over the set E of possible exceptions. The resulting structure
is the least restrictive extension of K that satisfies the axioms of FailKAT.

– From this conservativity theorem we obtain as a corollary a completeness
theorem for the class of algebras of functions X → P (X ⊕ (X × E)).

– The setting of FailTKAT requires an extended construction that works on a
subclass of Kleene algebras with tests that possess a top element �. We show
how to extend conservatively such algebras with fail and try-catch operations,
so that the extension is a FailTKAT.

– We then derive as a corollary the completeness of the calculus FailTKAT for
the equational theory induced by the coarser semantics in terms of functions
X → P (X ⊕ E).

2 Relational Models of Failure

A standard denotational way of describing the meaning of (failure-free) sequen-
tial imperative programs is using binary relations or, equivalently, functions of
type X → PX, where X is the state space and P is the powerset functor [32].
This denotational semantics agrees with the intended operational semantics,
and its advantage is that it allows us to define the meaning compositionally (by
induction on the structure of the program) using certain algebraic operations
on the carrier X → PX. In the program semantics literature, this is usually
referred to as the standard relational semantics of imperative programs.

In this section, we follow an analogous approach for the denotational seman-
tics of programs that can terminate abnormally. As we have already discussed
in the introduction, there are two different ways to define the meaning of such
programs, which lead us to consider functions of type X → P (X ⊕ (X × E))
and X → P (X ⊕ E) respectively. We will endow these sets of functions with
algebraic operations that are sufficient for interpreting the program structuring
operations. Our treatment is infinitary, since we will be considering an arbitrary
choice

∑
operation. This is more convenient for semantic investigations than a

finitary treatment, because the language is more economical (the operations 0,
+ and ∗ can all be expressed in terms of

∑
).

We write ιX,Y
1 : X → X⊕Y for the left injection map, and ιX,Y

2 : Y → X⊕Y
for the right injection map. The superscript X,Y is omitted when the types can
be inferred from the context. A function k of type X → P (X ⊕ (X × E)) is said
to be fail-free if k(x) is contained in {ι1(x) | x ∈ X} for all x ∈ X. For a set X,
we define now the algebra AX of all functions from X to P (X ⊕ (X × E)):

Equational Theories of Abnormal Termination Based on Kleene Algebra 93

AX � (A,K, ·,∑, 1, (faile)e∈E , (try-catche)e∈E) 1(x) � {ι1(x)}
A � functions X → P (X ⊕ (X × E)) faile(x) � {ι2(x, e)}
K � {k ∈ A | k is fail-free} (

∑
ifi)(x) �

⋃
ifi(x)

(f · g)(x) �
⋃{g(y) | ι1(y) ∈ f(x)} ∪ {ι2(y, e) | ι2(y, e) ∈ f(x)}

(try f catche g)(x) � {ι1(y) | ι1(y) ∈ f(x)} ∪ ⋃{g(y) | ι2(y, e) ∈ f(x)} ∪
{ι2(y, d) | ι2(y, d) ∈ f(x) and d 	= e}

Definition 1 (F-Quantales). Fix a set E of exceptions. An F-quantale with
exceptions E is a two-sorted algebraic structure

(A,K, ·,∑, 1, (faile)e∈E , (try-catche)e∈E)

with carriers K ⊆ A, where K is the sort of fail-free elements, and A is the
sort of all elements. We require that K is closed under · and

∑
, and that the

following hold (the variables u, v, . . . range over A and x, y, . . . range over K):

(u · v) · w = u · (v · w) 1 · u = 1 u · 1 = 1 (1)
faile · u = faile (2)
∑{u} = u (3)

∑
i(

∑
juij) =

∑
i,juij (arbitrary index sets) (4)

(
∑

iui) · v =
∑

iui · v (arbitrary index set) (5)
u · (

∑
ivi) =

∑
iu · vi (nonempty index set) (6)

x · (
∑

iyi) =
∑

ix · yi (arbitrary index set) (7)
try 1 catche u = 1 (8)

try faild catche u = faild, when d 	= e (9)
try faile catche u = u (10)

try (
∑

iui) catche w =
∑

itry ui catche w (arbitrary index set) (11)
try (x · v) catche w = x · (try v catche w) (12)

Lemma 2. The algebra of functions X → P (X ⊕ (X × E)) is an F -quantale.

3 The Basic Algebraic Theory of Failure

In this section we investigate the basic algebraic theory of abnormal termination.
One of our main goals here is to give a sound and complete axiomatization of the
equational theory (in the language of KAT with fail and try-catch) of the class
of relational F-quantales defined in Sect. 2. The axioms that we propose, which
we call FailKAT, define a class of structures with many more interesting models
other than the relational F-quantales (e.g., language models). We develop the
algebraic theory of these structures. Our development consists of several steps:

94 K. Mamouras

– We introduce the abstract class of FailKATs. Every F-quantale (with tests),
and hence every algebra of functions X → P (X ⊕ (X × E)), is a model.

– We present a general model-theoretic construction that builds a FailKAT FK
from an arbitrary KAT K. The elements of FK are pairs 〈x, ψ〉, where x is
an element of K and ψ : E → K is an E-indexed tuple of elements of K.
The component x is to be thought as the “fail-free” part, and ψ(e) is the
component that leads to failure with error code e.

– We show that the FailKAT FK can be defined equivalently in a syntactic way:
expand the signature with a family of fresh constants faile and a family of
try-catche operations, and quotient by the axioms of FailKAT.

– The aforementioned construction has several consequences, among which is
the completeness of FailKAT for the theory of relational F-quantales.

Several more useful completeness results can be obtained using the results of
[17,24], where free language models of KA with extra equations are identified.

(x + y) + z = x + (y + z)

x + y = y + x

x + x = x

x + 0 = x

(x · y) · z = x · (y · z)
1 · x = x

x · 1 = x

(x + y) · z = x · z + y · z
x · (y + z) = x · y + x · z

0 · x = 0

x · 0 = 0

1 + x · x∗ ≤ x∗ 1 + x∗ · x ≤ x∗ x · y ≤ y ⇒ x∗ · y ≤ y y · x ≤ y ⇒ y · x∗ ≤ y

Fig. 2. KA: axioms for Kleene algebras [12].

A Kleene algebra (KA) is an algebraic structure (K,+, ·,∗ , 0, 1) satisfying
the axioms of Fig. 2, which are implicitly universally quantified. The relation ≤
refers to the natural partial order on K, defined as: x ≤ y ⇐⇒ x + y = y. The
three top blocks of axioms (which do not involve the star operation) say that the
reduct (K,+, ·, 0, 1) is an idempotent semiring. We often omit the · operation
and write xy instead of x · y. A Kleene algebra with tests (KAT) is an algebraic
structure (K,B,+, ·,∗ , 0, 1,¬) with B ⊆ K, satisfying the following properties:
(i) the reduct (K,+, ·,∗ , 0, 1) is a KA, (ii) B contains 0, 1 and is closed under +
and ·, and (iii) the reduct (B,+, ·, 0, 1,¬) is a Boolean algebra.

Definition 3 (FailKAT). Fix a set E of exceptions. A KAT with failures E,
or simply FailKAT, is a three-sorted algebra

(A,K,B,+, ·,∗ , 0, 1,¬, (faile)e∈E , (try-catche)e∈E)

with B ⊆ K ⊆ A, where K is closed under +, · and ∗, and (K,B,+, ·,∗ , 0, 1,¬)
is a KAT. Moreover, (A,+, ·,∗ , 0, 1, faile, try-catche) satisfies the axioms of KA
except for u · 0 = 0, and it also satisfies the fail axiom (2) and the try-catch
axioms (8)–(12) of Definition 1. We say that K is the carrier of fail-free elements,
and A is the carrier of all elements (which may allow failure).

Equational Theories of Abnormal Termination Based on Kleene Algebra 95

For a KAT K and a set E of exceptions, we denote by KE the set of
E-indexed tuples (equivalently, the set of functions E → K). The operation
+ is defined on KE componentwise: (φ + ψ)(e) = φ(e) + ψ(e). For x ∈ K and
φ ∈ KE , we define x ·φ as follows: (x ·φ)(e) = x ·φ(e). For all elements x, y ∈ K
and every tuple φ ∈ KE , the distributivity property (x + y) · φ = (x · φ) + (y · φ)
holds. The zero tuple 0̄ is defined as 0̄(e) = 0 for all e. For a tuple φ ∈ KE , an
exception e, and an element x ∈ K, we write φ[x/e] for the tuple that agrees
with φ on E \ {e} and whose e-th component is equal to x. We say that a tuple
is of finite support if it has finitely many non-zero components. We write K〈E〉

for the set of all tuples of KE that have finite support.

Definition 4 (The Construction F). Let (K,B,+, ·,∗ , 0, 1,¬) be a KAT,
and E a set of exceptions. We define the three-sorted algebra

FK � (K × K〈E〉,K × {0̄}, B × {0̄},+, ·,∗ , 0F, 1F,¬, failFe , try-catchF
e)

with carriers K × K〈E〉, K × {0̄} and B × {0̄}, as follows:

0F � 〈0, 0̄〉 〈x, φ〉 + 〈y, ψ〉 � 〈x + y, φ + ψ〉
1F � 〈1, 0̄〉 〈x, φ〉 · 〈y, ψ〉 � 〈x · y, φ + x · ψ〉

failFe � 〈0, 0̄[1/e]〉 〈x, φ〉∗ � 〈x∗, x∗ · φ〉
¬〈p, 0̄〉 � 〈¬p, 0̄〉 try 〈x, φ〉 catche 〈y, ψ〉 � 〈x + φ(e) · y, φ[0/e] + φ(e) · ψ〉

Informally, the idea is that an element 〈x, φ〉 of FK consists of fail-free component
x, and the component φ(e) which leads to failure with error code e. From the
definition of + we get that 〈x, φ〉 ≤ 〈y, ψ〉 iff x ≤ y and φ(e) ≤ ψ(e) for all e.

Definition 4 is inspired from the operational intuition of how programs with
exceptions compute. Assuming that there is only one exception, we think of a
pair 〈x, φ〉 in FK as the program x+φ·fail. The operation · in 〈x, φ〉·〈y, ψ〉 models
sequential composition. The fail-free component of 〈x, φ〉 · 〈y, ψ〉 corresponds to
the possibility of executing x and y in sequence, and failure can result by either
executing φ or by executing x and ψ in sequence. The definitions of the rest of
the operations can be understood similarly.

Lemma 5. Let K be a KAT and E be a set of exceptions. The algebra FK is
a FailKAT, and the map x �→ 〈x, 0̄〉 is a KAT embedding of K into FK.

Definition 6 (Adjoin Elements for Failure). Let (K,B,+, ·,∗ , 0, 1,¬) be
a KAT, E be a set of exceptions, and faile for all e ∈ E be fresh distinct symbols
that denote failure or abnormal termination. We also consider for every exception
e a fresh binary operation symbol try-catche. For every element x ∈ K we intro-
duce a constant symbol cx. We define the sets TrmB(K) ⊆ Trm(K) ⊆ TrmF (K)
of algebraic terms with the following generation rules:

96 K. Mamouras

p ∈ B

cp ∈ TrmB(K)
s, t ∈ TrmB(K)

s + t, s · t, ¬s ∈ TrmB(K)
t ∈ TrmB(K)
t ∈ Trm(K)

x ∈ K
cx ∈ Trm(K)

s, t ∈ Trm(K)
s + t, s · t, t∗ ∈ Trm(K)

t ∈ Trm(K)
t ∈ TrmF (K)

faile ∈ TrmF (K)
s, t ∈ TrmF (K)

s + t, s · t, t∗, try s catche t ∈ TrmF (K)

The function cx �→ x, where x ∈ K, extends uniquely to a homomorphism
k : Trm(K) → K. The diagram of K, defined as ΔK � {s ≡ t | k(s) = k(t)},
is the set of equations s ≡ t that are true under k. In other words, ΔK is the
kernel of the homomorphism k. Finally, we define the set of equations

EK � FailKAT-Closure(ΔK)

to be the least set that contains ΔK and is closed under the axioms and rules of
FailKAT and Horn-equational logic. By the axioms and rules of equational logic,
the equations of EK define a FailKAT-congruence on TrmF (K). For a term t in
TrmF (K), we write [t]E to denote its congruence class. Define the three-sorted
algebra FK with carriers B̂ ⊆ K̂ ⊆ A as:

A � {[t]E | t ∈ TrmF (K)} K̂ � {[t]E | t ∈ Trm(K)} B̂ � {[t]E | t ∈ TrmB(K)}

Since the equations EK define a FailKAT-congruence, we can define the FailKAT
operations of FK on the equivalence classes of terms:

0F � [c0]E failFe � [faile]E [s]E + [t]E � [s + t]E ([t]E)∗ � [t∗]E

1F � [c1]E [s]E · [t]E � [s · t]E

We have thus defined the algebra FK, which has the signature of FailKATs.

Lemma 7 (Normal Form). For every term t in TrmF (K) there are fail-free
terms tP and te in Trm(K) (for every exception e that appears in t) such that
the equation t ≡ tP +

∑
ete · faile is in EK .

Proof. Since terms are finite and only finitely many exceptions occur in them,
we fix w.l.o.g. a finite E. The proof is by induction on the structure of t. If t is
a fail-free term, then notice that the equation t ≡ t +

∑
e∈E0 · faile is in EK . For

the case t = faild, we observe that faild ≡ 0+1 · faild +
∑

e�=d0 · faile is in EK . For
the induction step, we have the following equations in EK :

s + t ≡ (sP +
∑

ese · faile) + (tP +
∑

ete · faile)
≡ (sP + tP) +

∑
e∈E(se + te) · faile

s · t ≡ (sP +
∑

ese · faile) · (tP +
∑

ete · faile)
≡ sP · tP +

∑
esP · te · faile +

∑
ese · faile · (. . .)

≡ sP · tP +
∑

e(se + sP · te) · faile

Equational Theories of Abnormal Termination Based on Kleene Algebra 97

t∗ ≡ (tP +
∑

ete · faile)∗
≡ t∗P · (

∑
ete · faile · t∗P)∗

≡ t∗P · (
∑

ete · faile)∗
≡ t∗P · (1 + (

∑
ete · faile) · (

∑
ete · faile)∗)

≡ t∗P · (1 +
∑

ete · faile)
≡ t∗P +

∑
et

∗
P · te · faile

try s catchd t ≡ try (sP +
∑

ese · faile) catchd (tP +
∑

ete · faile)
≡ try sP catchd (tP +

∑
ete · faile)

+
∑

etry (se · faile) catchd (tP +
∑

ete · faile)
≡ sP · (try 1 catchd (tP +

∑
ete · faile))

+
∑

ese · (try faile catchd (tP +
∑

ete · faile))
≡ sP + sd · (tP +

∑
ete · faile) +

∑
e�=d se · faile

≡ (sP + sd · tP) +
∑

esd · te · faile +
∑

e�=d se · faile
≡ (sP + sd · tP) + sd · td · faild +

∑
e�=d (se + sd · te) · faile

We have used the property (x + y)∗ = x∗(yx∗)∗, which is a theorem of KA. ��
Theorem 8 (F and F). The FailKATs FK and FK are isomorphic.

Proof. We define the map h : TrmF (K) → FK to be the unique homomorphism
satisfying h(cx) = 〈x, 0̄〉 and h(faile) = 〈0, 0̄[1/e]〉. Notice that h sends fail-
free terms to fail-free elements of FK. By Lemma 5, FK is a FailKAT, and
therefore h(s) = h(t) for every equation s ≡ t in EK . So, we can define the map
ĥ : TrmF (K)/EK → FK by [t]E �→ h(t). In fact, ĥ is a FailKAT homomorphism
from FK to FK. Moreover, ĥ is surjective: for every 〈x, φ〉 ∈ FK, where D ⊆ E
is the finite support of φ, we have that

ĥ([cx +
∑

e∈D cφ(e) · faile]E) = h(cx +
∑

e∈D cφ(e) · faile)
= h(cx) +

∑
e∈Dh(cφ(e)) · h(faile)

= 〈x, 0̄〉 +
∑

e∈D〈φ(e), 0̄〉 · 〈0, 0̄[1/e]〉
= 〈x, 0̄〉 +

∑
e∈D〈0, φ(e) · 0̄[1/e]〉

= 〈x, φ〉.
Finally, we claim that ĥ is injective. Suppose that ĥ([s]E) = ĥ([t]E). Lemma 7
says that there are fail-free terms sP , se, tP , te (for e ∈ D ⊆ E) in Trm(K) s.t.

s ≡ sP +
∑

ese · faile t ≡ tP +
∑

ete · faile
are equations of EK . From our hypothesis above we obtain that

ĥ([s]E) = ĥ([t]E) =⇒ h(s) = h(t)
=⇒ h(sP +

∑
ese · faile) = h(tP +

∑
ete · faile)

=⇒ 〈k(sP), (k(se))e∈D〉 = 〈k(tP), (k(te))e∈D〉
=⇒ k(sP) = k(tP) and k(se) = k(te) for all e ∈ D.

98 K. Mamouras

(Recall the function k : Trm(K) → K from Definition 6.) It follows that the
equations sP ≡ tP and se ≡ te are in the diagram ΔK . So, s ≡ t is in EK . We
thus obtain that [s]E = [t]E . So, ĥ is a FailKAT isomorphism. ��

The above theorem says that the extension of a KAT K with faile elements
and try-catche operations is conservative, since the mapping x �→ 〈x, 0̄〉 embeds K
into FK ∼= FK. This is a very useful property, because it means that a language
of while-programs (whose semantics is defined by interpretation in a KAT) can
be extended naturally to accomodate the extra programming feature of failure.

Corollary 9 (Completeness for Relational Models). FailKAT is complete
for the equational theory of the class of algebras X → P (X ⊕ (X × E)).

Proof. It is known from [12,13] that KA and KAT are complete for the class of
relational models X → PX. In fact, for a fixed finite set Σ of atomic actions
and a fixed finite set B0 of atomic tests, there is a single full relational model
Rel(Σ,B0) that characterizes the theory. We fix a finite set E of exceptions.
Using the observation P (X ⊕ (X × E)) ∼= (PX) × (PX)E we can see that
the algebras X → P (X ⊕ (X × E)) and F(X → PX) (recall Definition 4) are
isomorphic. Since KAT is complete for the theory of Rel(Σ,B0), Theorem 8
implies that FailKAT is complete for the theory of FRel(Σ,B0). This means
that FailKAT is complete for the class of all relational models. ��

Let Σ be a finite set of atomic actions, and B0 be a finite set of atomic tests.
Kozen and Smith have shown in [20] that KAT is complete for Reg(Σ,B0), the
algebra of regular sets of guarded strings over Σ and B0. Theorem 8 implies that
FailKAT is complete for the algebra FReg(Σ,B0), which is therefore the free
FailKAT with action generators Σ and test generators B0.

First, we observe that the decidability of FailKAT is an easy consequence
of Lemma 7. To decide the equivalence of two terms s and t, we rewrite them
according to the proof of Lemma7 into equivalent normal forms s ≡ sP +

∑
ese ·

faile and t ≡ tP +
∑

ete · faile, where e ranges over the exceptions that appear
in s and t and all the terms sP , se, tP , te are fail-free. It follows that s ≡ t iff
sP ≡ tP and se ≡ te for all e, hence equivalence can be decided using a decision
procedure for KAT. As discussed in the previous paragraph, the language model
FReg(Σ,B0) characterizes the equational theory of FailKAT, which suggests
that an appropriate variant of Kozen’s guarded automata [14,16] can be used to
decide the equational theory in polynomial space.

Example 10. Exceptions and their handlers can be used to encode widely used
constructs of non-local control flow, such as break and continue. The program

h = while (true) do {a; (if p̄ then break); (if q̄ then continue); b}

can be shown to be equivalent to h′ = a; while p do {(if q then b); a} using
FailKAT. We abbreviate ¬p by p̄, and ¬q by q̄. The program h is encoded as fol-
lows:

Equational Theories of Abnormal Termination Based on Kleene Algebra 99

try {
while (true) do {

try {a; (if p̄ then faile); (if q̄ then faild); b} catch(d) { }
}

} catch(e) { }
Let g be the body of the while loop, and f be subprogram of the inner try-catch
statement. In the language of FailKAT, we have that f = a(p̄faile+p)(q̄faild+q)b,
g = try f catchd 1, and h = try (g∗0) catche 1. Using the FailKAT axioms we get:

f = ap̄faile + ap(q̄faild + q)b = ap̄faile + apq̄faild + apqb

g = ap̄faile + apq̄ + apqb

g∗ = ((apq̄ + apqb) + ap̄faile)
∗ = (apq̄ + apqb)∗(ap̄faile(apq̄ + apqb)∗)∗

= (apq̄ + apqb)∗(ap̄faile)
∗ = (apq̄ + apqb)∗(1 + ap̄faile)

g∗0 = (apq̄ + apqb)∗(1 + ap̄faile)0 = (apq̄ + apqb)∗ap̄faile
h = (apq̄ + apqb)∗ap̄ = (a(pq̄ + pqb))∗ap̄

h′ = a(p(qb + q̄)a)∗p̄ = a((pqb + pq̄)a)∗p̄ = (a(pqb + pq̄))∗ap̄

which means that h = h′. We have used above the theorems (x+y)∗ = x∗(yx∗)∗
and x(yx)∗ = (xy)∗x of KA.

Example 11. We will establish using FailKAT the equivalence of the programs
of Fig. 1. The program on the right-hand side is an optimized version because
it eliminates the check of the condition i ≥ 0. To streamline the presentation
we abbreviate (i := 0) by a, (X[i] := 0) by b, and (i := i + 1) by c. We also use
the abbreviations p, q and r for the tests (i < n), (0 ≤ i) and (i < X.length)
respectively, and write p̄, q̄, r̄ instead of ¬p, ¬q, ¬r respectively. The extra
hypotheses of Fig. 1 can be then written as a = aq, qb = bq, and qc = qcq.
Using these abbreviations we encode the right-hand side program of Fig. 1 as
R = a(p(r̄fail + r)bc)∗p̄ = a(pr̄fail + prbc)∗p̄ = ag∗p̄, where g = prbc + pr̄fail ,
and the left-hand side program as

L = a(p(qr + ¬(qr)fail)bc)∗p̄ = a(p(qr + (q̄ + qr̄)fail)bc)∗p̄ = ah∗p̄,

where h = pqrbc+pq̄fail +pqr̄fail . With qb = bq and qc = qcq we show qh = qhq
and hence qh∗ = q(qhq)∗ = q(qh)∗ = q(pqrbc+pqr̄fail)∗ = q(q(prbc+pr̄fail))∗.
Since qg = qgq we obtain similarly that qh∗ = q(qg)∗ = qg∗. Finally, using the
hypothesis a = aq we obtain that L = ah∗p̄ = aqh∗p̄ = aqg∗p̄ = ag∗p̄ = R.

4 A Stronger Theory of Failure

In this section we investigate a stronger (i.e., with more theorems) algebraic
theory of abnormal termination. We will write ≈ to refer to this notion of equiv-
alence to differentiate it from the weaker equivalence that we studied in Sect. 3.

100 K. Mamouras

This stronger theory, called FailTKAT, results from FailKAT by adding the
axioms

u = v =⇒ u ≈ v x · faile � faile ≈ is KA-congruence

where u, v are arbitrary elements and x is a fail-free element. As in the previous
section, our ultimate goal is to give a sound and complete axiomatization of the
relation ≈ on the algebra X → P (X ⊕ (X × E)). First, we define a projection
operation π that “forgets” the output state in the case or error:

f : X → P (X ⊕ (X × E))
π(f) : X → P (X ⊕ E)

π(f)(x) � {ι1(y) | ι1(y) ∈ f(x)} ∪
{ι2(e) | ι2(y, e) ∈ f(x)}

The ≈ equivalence can then be defined as follows: f ≈ g iff π(f) = π(g).
The operation of forgetting the output state is defined for algebras of

input/output relations in the obvious way, but it is not apparent if a more
general construction can be formulated for a subclass of Kleene algebras. As it
turns out, there exists a very natural subclass of KATs, which we call KATs
with a top element, for which this is possible.

Definition 12 (KAT With Top Element). A KAT with a top element or a
TopKAT is a structure (K,B,+, ·,∗ , 0, 1,¬,�) so that (K,B,+, ·,∗ , 0, 1,¬) is a
KAT and the top element � satisfies the inequality x ≤ � for all x ∈ K.

Intuitively, the top element � is needed to forget the state of the memory.
More precisely, right multiplication (− · �) by the top element models the pro-
jection function that eliminates the state. Without the top element we cannot
define the coarser equivalence relation ≈ using the operations of KA.

Definition 13 (Generalized≈Equivalence). Let K be a TopKAT and E be
a set of exceptions. We define for the algebra FK of Definition 4 the equivalence
relation ≈ as follows: 〈x, φ〉 ≈ 〈y, ψ〉 iff

x = y and φ(e) · � = ψ(e) · � for every e ∈ E.

The projection map π : 〈x, φ〉 �→ 〈x, φ′〉 is defined as φ′(e) = φ(e) · � for all e.
So, ≈ can be equivalently defined as: 〈x, φ〉 ≈ 〈y, ψ〉 iff π(〈x, φ〉) = π(〈y, ψ〉).
Lemma 14 (Projection). Let K be a TopKAT and E be a set of exceptions.
For the algebra FK and the projection map π of Definition 13 the following hold:

π(failFe) = 〈0, 0̄[�/e]〉 π(1F) = 1F π(0F) = 0F

π(u + v) = π(v) + π(v) π(u · v) = π(u) · π(v) π(u∗) = π(u)∗

Moreover, π(x·failFe +failFe) = π(failFe) or, equivalently, x·failFe � failFe . Note: the
variables u, v range over arbitrary elements and x ranges over fail-free elements.

Equational Theories of Abnormal Termination Based on Kleene Algebra 101

Proof. The commutation properties are easy to verify. For the second part, we
have: π(〈0, 0̄[x/e]〉+ 〈0, 0̄[1/e]〉) = π(〈0, 0̄[x+1/e]〉) = 〈0, 0̄[(x+1)�/e]〉 and also
π(〈0, 0̄[1/e]〉) = 〈0, 0̄[�/e]〉. It suffices to show that (x+1)� = � in the TopKAT
K, which is true because (x + 1)� = x� + � = �. ��

The equations of Lemma 14 that show how π commutes with the KA opera-
tions of FK imply additionally that ≈ is a KA-congruence. For example, u ≈ v
implies π(u) = π(v), which gives us π(u∗) = π(u)∗ = π(v)∗ = π(v∗) and there-
fore u∗ ≈ v∗. So, FK with ≈ is a model of the FailTKAT axioms.

We extend now Definition 6 to expand the algebra FK, where K is a TopKAT,
with a relation ≈. Similarly to the construction of the previous section, ≈ is given
as follows for terms s and t: [s]E ≈ [t]E iff s ≈ t is provable using the system
FailTKAT and the diagram of K.

Theorem 15. Let K be a TopKAT and E be a set of exceptions. The
FailTKATs (FK,≈) and (FK,≈) are isomorphic.

Proof. The proof extends the one for Theorem 8. It remains to show that for all
terms s and t: [s]E ≈ [t]E iff ĥ([s]E) ≈ ĥ([t]E). The right-to-left direction is the
interesting one. By Lemma 7, we bring s and t to their normal forms and:

ĥ([s]E) ≈ ĥ([t]E) =⇒ π(h(s)) = π(h(t))
=⇒ π(h(sP +

∑
ese · faile)) = π(h(tP +

∑
ete · faile))

=⇒ 〈k(sP), (k(se)�)e∈D〉 = 〈k(tP), (k(te)�)e∈D〉
=⇒ k(sP) = k(tP) and k(se · c�) = k(te · c�) for all e ∈ D.

It follows that sP ≡ tP and se · c� ≡ te · c� are in the diagram of K. Now,

s ≈ sP +
∑

ese · faile ≈ sP +
∑

ese · c� · faile
≈ tP +

∑
ete · c� · faile ≈ tP +

∑
ete · faile ≈ t

is provable, because x · faile ≈ x · c� · faile follows from ΔK and FailTKAT.

1 � c� ⇒ x · faile � x · c� · faile c� · faile � faile ⇒ x · c� · faile � x · faile

We thus obtain that [s]E ≈ [t]E . So, ĥ is a FailTKAT isomorphism. ��
Similarly to Theorem 8 of the previous section, we interpret Theorem 15 as

saying that an arbitrary KAT with a top element can be extended conservatively
into a KAT with failure that satisfies the additional axiom x · faile � faile. The
mapping x �→ 〈x, 0̄〉 embeds the TopKAT K into the extension (FK,≈).

Corollary 16 (Completeness for Relational Models). FailTKAT is
complete for the theory of the relation ≈ on the class of algebras X →
P (X⊕(X×E)). Notation: Recall that f ≈ g iff the projections of f and g to
functions of type X → P (X ⊕ E) (by applying π) are equal.

102 K. Mamouras

Proof (sketch). Similar to the proof of Corollary 9. We have to show that the
first-order structures X → P (X⊕(X×E)) and F(X → PX) (signature extended
with the projection π and the equivalence ≈) are isomorphic. This relies on the
observation P (X ⊕ E) ∼= (PX) × (1 ⊕ 1)E ∼= (PX) × ({∅} ⊕ {X})E . ��

In the previous section we discussed how our conservativity result for
FailKAT gives as easy consequences the existence of a free language model,
the decidability of the theory, and also suggests a way to approach the question
of complexity using guarded automata. The situation is similar for FailTKAT,
it suffices to observe that the free KAT Reg(Σ,B0) with action generators Σ
and test generators B0 has a top element: the guarded language denoted by the
expression Σ∗.

5 Related Work

As far as the basic theory of failure is concerned, the works [9,15] are closely
related to ours. In both these papers, extensions of KAT are investigated that can
be used for reasoning about nonlocal flow of control, using e.g. labels and goto
statements. Syntactically, these systems amount essentially to using matrices of
expressions, where the row index corresponds to an entry label and the column
index corresponds to an exit label. While the fail operation can be encoded
using such general constructs of nonlocal flow of control, the works [9,15] do
not address the question of whether it is possible to axiomatize fail directly, i.e.
without translation into a more complicated language. We have shown here that
this is indeed the case, which is a new result and does not follow from any of
[9,15]. The system FailKAT that we introduce here axiomatizes the properties
of failure directly, and thus offers a more convenient style of reasoning for this
computational phenomenon. More importantly, we depart completely from the
investigations of [9,15] when we consider the stronger theory FailTKAT. None
of these earlier systems can capture the properties of failure under the coarser
equivalence that we study here.

Aceto and Hennessy study in [1,2] a process algebra that includes an explicit
symbol δ for deadlock. This is somewhat similar to our fail operation, since
δ satisfies the equational property δ; x = δ. Our work is, however, markedly
distinct and contributes very different results. The work of Aceto and Hennessy
studies a notion of bisimulation preorder, which does not have the same theory
as language or trace equivalence. We axiomatize here the input-output behavior
of programs, which correponds to language (and not bisimulation) equivalence.

The literature on computational effects, monads [8,28], and algebraic oper-
ations [11,30,31] is somewhat related to our work at a conceptual level. Within
this body of work, exceptions and failure are modeled using the formalism of
monads. In sharp contrast to what we are doing here, the work on monads typ-
ically focuses on the type structure (whereas we have here only two sorts!) and
different program structuring operations (e.g., products and function abstrac-
tion) in the setting of a functional language. At a technical level, there is not

Equational Theories of Abnormal Termination Based on Kleene Algebra 103

much of an intersection between our investigations and the work on monads. The
language of KAT is generally more abstract than the monad-based formalisms,
which maybe include constructs like products, as in A×B → P (A×B), or return
values, as in A → (S → P (S × B)). Such extra constructs can easily make it
impossible to obtain any kind of useful completeness theorem. In particular, if
the language allows loops and binary products, then we can encode abstrac-
tions of imperative programs whose state can be decomposed in variables that
can be read from and written to independently. This is the case of the so-called
“two-variable while program schemes”, whose partial-correctness and equational
theory are not recursively enumerable [22]. This suggests that the abstraction
level of KA/KAT is necessary for obtaining meaningful unconditional complete-
ness theorems for programs with an iteration construct.

6 Conclusion

We have considered here two algebraic theories, called FailKAT and FailTKAT,
for imperative while programs with an explicit fail operation that causes abnor-
mal termination. The system FailKAT captures the notion of program equiva-
lence that results from a semantics that allows for the observation of the final
state upon failure. The system FailTKAT captures a coarser notion of equiva-
lence, namely when we cannot observe the final state of the computation upon
failure. Both notions of equivalence are meaningful and useful, and we have seen
that they admit simple and intuitive axiomatizations. From a technical perspec-
tive, the case of FailTKAT is more challenging and interesting.

A important direction for future work is the study of FailKAT and FailTKAT
in the coalgebraic setting. Such an investigation would contribute to the question
(posed by Kozen in [15]) of whether there is a simple coalgebraic treatment of
nonlocal flow of control involving a definition of derivatives [4,5] for the nonlocal
control flow constructs. We expect that the fail and try-catch constructs, which
are much more structured than labels and goto statements, lend themselves to
an elegant coalgebraic treatment. At a practical level, this would give rise to
simple and efficient automata-theoretic decision procedures.

Another interesting question is whether the ideas of the present paper can
be applied to other logical systems. Some apparent candidates are variations of
KAT such as NetKAT [3,7] and Nominal KA [18,19]. Abnormal termination and
nonlocal flow of control have been studied in the context of partial correctness
theories based on Hoare logic (see, for example, [6,10,29,33,34]). It seems likely
that the axioms of FailKAT can inspire axioms and rules for Hoare logics that
treat failure and exception handling, and even obtain unconditional completeness
results (see, for example, [21,23,25–27]) in the propositional setting.

104 K. Mamouras

References

1. Aceto, L., Hennessy, M.: Termination, deadlock and divergence. In: Main, M.,
Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1989. LNCS, vol. 442, pp. 301–
318. Springer, New York (1990). doi:10.1007/BFb0040264

2. Aceto, L., Hennessy, M.: Termination, deadlock, and divergence. J. ACM 39(1),
147–187 (1992)

3. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: semantic foundations for networks. In: Proceedings of the
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2014), pp. 113–126 (2014)

4. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theor. Comput. Sci. 155(2), 291–319 (1996)

5. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
6. Delbianco, G.A., Nanevski, A.: Hoare-style reasoning with (algebraic) continua-

tions. In: Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2013), pp. 363–376 (2013)

7. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic
NetKAT. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 282–309.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1 12

8. Goncharov, S., Schröder, L., Mossakowski, T.: Kleene monads: handling iteration
in a framework of generic effects. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 18–33. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03741-2 3

9. Grathwohl, N.B.B., Kozen, D., Mamouras, K.: KAT + B! In: Proceedings of the
Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic
(CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS 2014, pp. 44:1–44:10 (2014)

10. Huisman, M., Jacobs, B.: Java program verification via a Hoare logic with abrupt
termination. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303.
Springer, Heidelberg (2000). doi:10.1007/3-540-46428-X 20

11. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theor.
Comput. Sci. 357(1), 70–99 (2006)

12. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

13. Kozen, D.: Kleene algebra with tests. Trans. Programm. Lang. Syst. 19(3), 427–443
(1997)

14. Kozen, D.: Automata on guarded strings and applications. Matématica Contem-
porânea 24, 117–139 (2003)

15. Kozen, D.: Nonlocal flow of control and Kleene algebra with tests. In: Proceedings
of the 23rd Annual IEEE Symposium on Logic in Computer Science (LICS 2008),
pp. 105–117 (2008)

16. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Technical report,
Computing and Information Science, Cornell University, March 2008

17. Kozen, D., Mamouras, K.: Kleene algebra with equations. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp.
280–292. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7 24

18. Kozen, D., Mamouras, K., Petrişan, D., Silva, A.: Nominal Kleene coalgebra.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 286–298. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47666-6 23

http://dx.doi.org/10.1007/BFb0040264
http://dx.doi.org/10.1007/978-3-662-49498-1_12
http://dx.doi.org/10.1007/978-3-642-03741-2_3
http://dx.doi.org/10.1007/978-3-642-03741-2_3
http://dx.doi.org/10.1007/3-540-46428-X_20
http://dx.doi.org/10.1007/978-3-662-43951-7_24
http://dx.doi.org/10.1007/978-3-662-47666-6_23
http://dx.doi.org/10.1007/978-3-662-47666-6_23

Equational Theories of Abnormal Termination Based on Kleene Algebra 105

19. Kozen, D., Mamouras, K., Silva, A.: Completeness and incompleteness in nom-
inal Kleene algebra. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAM-
ICS 2015. LNCS, vol. 9348, pp. 51–66. Springer, Cham (2015). doi:10.1007/
978-3-319-24704-5 4

20. Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability. In:
Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259. Springer,
Heidelberg (1997). doi:10.1007/3-540-63172-0 43

21. Kozen, D., Tiuryn, J.: On the completeness of propositional Hoare logic. Inf. Sci.
139(3–4), 187–195 (2001)

22. Luckham, D.C., Park, D.M.R., Paterson, M.S.: On formalised computer programs.
J. Comput. Syst. Sci. 4(3), 220–249 (1970)

23. Mamouras, K.: On the Hoare theory of monadic recursion schemes. In: Proceedings
of the Joint Meeting of the 23rd EACSL Annual Conference on Computer Science
Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS 2014, pp. 69:1–69:10 (2014)

24. Mamouras, K.: Extensions of Kleene algebra for program verification. Ph.D. thesis,
Cornell University, Ithaca, NY, August 2015

25. Mamouras, K.: Synthesis of strategies and the Hoare logic of angelic nondeter-
minism. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 25–40. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46678-0 2

26. Mamouras, K.: The Hoare logic of deterministic and nondeterministic monadic
recursion schemes. ACM Trans. Comput. Logic (TOCL) 17(2), 13:1–13:30 (2016)

27. Mamouras, K.: Synthesis of strategies using the Hoare logic of angelic and demonic
nondeterminism. Log. Methods Comput. Sci. 12(3), 1–41 (2016)

28. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
29. von Oheimb, D.: Hoare logic for Java in Isabelle/HOL. Concurr. Comput. Pract.

Exp. 13(13), 1173–1214 (2001)
30. Plotkin, G., Power, J.: Computational effects and operations. ENTCS 73, 149–163

(2004)
31. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.)

ESOP 2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00590-9 7

32. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proceedings of
the 17th IEEE Annual Symposium on Foundations of Computer Science (FOCS
1976), pp. 109–121 (1976)

33. Saabas, A., Uustalu, T.: A compositional natural semantics and Hoare logic for
low-level languages. Theor. Comput. Sci. 373(3), 273–302 (2007)

34. Tan, G., Appel, A.W.: A compositional logic for control flow. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer, Heidel-
berg (2005). doi:10.1007/11609773 6

http://dx.doi.org/10.1007/978-3-319-24704-5_4
http://dx.doi.org/10.1007/978-3-319-24704-5_4
http://dx.doi.org/10.1007/3-540-63172-0_43
http://dx.doi.org/10.1007/978-3-662-46678-0_2
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1007/11609773_6

	Equational Theories of Abnormal Termination Based on Kleene Algebra
	1 Introduction
	2 Relational Models of Failure
	3 The Basic Algebraic Theory of Failure
	4 A Stronger Theory of Failure
	5 Related Work
	6 Conclusion
	References

