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Kleene algebra (KA) is an algebraic system that captures completely the laws of

equivalence for regular expressions. It is also useful for reasoning about a mul-

titude of computationally interesting structures. Of central interest in KA is

a “star” operation that typically describes some kind of repetition or iteration.

A combination of Kleene algebra with Boolean algebra has been proposed un-

der the name of Kleene algebra with tests (KAT). This logical system can model

the conventional programming constructs of imperative iterative programs, e.g.

while loops and conditionals, and it has proven useful for various program ver-

ification tasks.

In this dissertation we investigate variations and extensions of KA and KAT

that are useful for program verification and for reasoning about mathematical

structures that appear in computer science. At a technical level, we are inter-

ested in establishing completeness theorems, which assert that a proposed logical

system is strong enough to capture all properties that are true in a mathemati-

cal structure or in a class of mathematical structures. Such results assure us of

the quality of a logical system, and their proof often (certainly for the systems

that we study here) reveals a systematic way of creating proof objects that certify

properties of interest.

The first part of this thesis explores generic extensions of KA and KAT with

extra equational assumptions. Such extensions are meant to capture in the context

of program verification some crucial properties of the domain of computation.



We present a very general completeness meta-theorem that instantiates into sev-

eral useful concrete completeness results.

The second part focuses on extensions of KAT with extra mutable state that

enable many useful semantics-preserving program transformations. The trans-

formations we intend to cover are motivated by classical examples from the area

of program schematology. We offer a rigorous and mathematically appealing

algebraic approach, which replaces the typical combinatorial arguments about

flowchart schemes with equational reasoning.

Finally, a typed variation of KA is investigated that intends to capture prop-

erties of mathematical structures that appear in domain theory. The main result

is that our proposed typed KA with products is strong enough to establish all

the abstract properties of parametric fixpoints in the standard semantic model

CPO, which is the category of ω-CPOs and ω-continuous maps.
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CHAPTER 1

INTRODUCTION

1.1 Kleene Algebra

Kleene algebra (KA) is an algebraic system that captures axiomatically the prop-

erties of a wide range of structures that arise in computer science and logic.

It is named after Stephen Cole Kleene, who invented regular expressions and

proved their equivalence to finite automata in his seminal work from the 1950’s

[58, 59]. Kleene algebra is the algebraic theory of these fundamental structures,

but (as we will discuss later) it is not restricted only to these interpretations.

The name Kleene algebra was coined by John H. Conway, who developed signif-

icantly in his monograph [31] the algebraic theory.

Already in the aforementioned work of Kleene [58, 59] the issue of axiomati-

zation is touched upon. More specifically, Kleene identifies in his paper several

valid equivalences that can be used for “algebraic transformations of regular

expressions”. The notion of equivalence he refers to is that of language equiva-

lence, that is, two expressions are considered to be equivalent if they denote the

same regular set of words.

Kleene algebra has many more natural interpretations besides the standard

language-theoretic one. Kleene algebras arise in the context of relational algebra

[97, 124], as well as in the context of the standard relation-theoretic semantics

of imperative computation (based on binary relations on a state space) and the

respective logics of programs [106, 107, 108, 65, 109]. Many more models can be

found in the areas of automata and formal language theory (see, for example,

1



[89] for a generalized treatment using semirings and formal power series).

Interestingly, Kleene algebras also arise in the design and analysis of algo-

rithms. They offer a convenient level of abstraction at which one can describe

generic algorithms for computing reachability (i.e., reflexive transitive closure)

and shortest paths in directed graphs [86, 5, 95, 37]. For the case of reachability,

the algebra of n × n Boolean matrices is considered. For computing all-pairs

shortest paths, the so called (min,+) algebra is used. A Kleene algebra of con-

vex polygons, with an operation for the vector sum of two polygons and an

operation for the convex hull of the union of two polygons, has been used to

solve a cycle problem in directed graphs [56].

1.2 Dynamic Logic

Kleene algebra forms an essential component of Propositional Dynamic Logic

(PDL) [35, 36], which is a propositionally abstracted logical system that can

describe partial correctness, equivalence, and termination. PDL is the propo-

sitional counterpart of Pratt’s Dynamic Logic (DL) [106, 50, 51] (see also

[47, 83, 48, 49] for general references). The main idea is to integrate programs in

an assertion language that combines Boolean logic and modal operators [15]. If

f is a program and p is an assertion, then the expression [f ]p is a new assertion

whose meaning is that “whenever f is executed, the assertion p holds upon ter-

mination.” So, for every program f we have a “box” modal operator [f ]. A dual

“diamond” modal operator 〈f〉 is given by 〈f〉p = ¬[f ]¬p. The meaning of 〈f〉p

is that “the program f can terminate in a state satisfying p.”

Kleene algebra can be regarded as an equational subsystem of PDL. For prac-
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tical applications in program verification, many simple program transforma-

tions do not require the full power of PDL, but can be modeled in a purely

equational system using the axioms of KA. We note that the Boolean algebra

component of PDL is essential for programs, because it is necessary for model-

ing the guards of conditionals and while loops. A combination of Kleene algebra

and Boolean algebra was proposed in [71, 72], which is particularly convenient

for reasoning about conventional imperative programming constructs such as

conditionals and while loops. This variant of KA, which we will define later, is

called Kleene algebra with tests (KAT) and it subsumes traditional approaches to

program verification such as Floyd-Hoare logic [38, 52, 53, 32, 8, 9, 75].

1.3 Program Schematology

A program schema is an abstract algorithm or program, where the meaning of

the primitive operations is left unspecified. A program schema is also called

an uninterpreted program, because the base functions lack a fixed interpretation.

The theory of program schematology has a rich history that goes back to the

early work of Ianov [55], which is also reported by Rutledge in [115]. One of the

goals of this line of research is to study problems like program equivalence and

partial correctness (which are undecidable for general programs) in an abstract

setting. The hope is that these unsolvable problems might become solvable for

such abstract models of computation.

The program schemes of Ianov represent only the sequential and control

properties of iterative programs, and they disregard almost all information

about the nature of the primitive operations. This massive abstraction sacri-
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fices a large part of the essential structure of programs, and it leaves us with a

model of computation that is little more than finite automata [111]. The benefit,

however, is that a decision procedure for the equivalence of such schemes can

be obtained.

An enormous amount of work has appeared on schematic models of com-

putation that extend Ianov’s model with more features, see for example [99, 100,

93, 33, 57, 90, 102, 101, 40, 41, 26, 11, 94, 110]. In Ianov’s model the state space of a

program is seen as one indivisible entity and the program actions are modeled

as unary functions that act on the entire program space. Unfortunately, even

the seemingly innocuous extension of the schematic language to allow several

distinct program variables x, y, z, . . . that subdivide the program space and un-

interpreted actions that can read from and assign to variables individually (e.g.,

an assignment y ← f(x, z) that only changes the value of y) gives rise to un-

decidable reasoning problems [90, 110]. This devastating negative result meant

that it was fundamentally impossible to realize the goal of obtaining decision

procedures for reasoning about rich uninterpreted models. As a result, the area

of program schematology focused largely on questions related to expressiveness

and translatability between different models [102, 122, 123, 121, 30, 26], thus il-

luminating the relative power of programming features. More recent papers

that essentially study partial-correctness properties for propositional program

schemes (with some extensions) are [84, 91, 92].

Program schemes are typically presented as directed graphs, where the ver-

tices are labeled with atomic actions (e.g., variable assignments) or tests, and the

edges represent the flow of control. Unfortunately, this formalism is not com-

positional, and typical arguments for establishing scheme equivalence involve
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complicated “surgery” on graphs [94]. Kleene algebra, which replaces combi-

natorial reasoning on graphs by algebraic manipulation [7, 44], can offer a much

more satisfying approach to the problem of scheme equivalence.

1.4 KA and KAT

A Kleene algebra is an algebraic structure (K,+, ·,∗ , 0, 1) that consists of a

nonempty set K, together with distinguished binary operations + (sum) and

· (multiplication), a unary operation ∗, and constants 0 and 1 that satisfy certain

properties. An important example of a Kleene algebra is the family Reg(Σ) of

regular sets over a finite alphabet Σ with the operations ∪, ·, ∗, ∅ and {ε}, where

A ·B = {xy | x ∈ A and y ∈ B} A0 = {ε}

A∗ =
⋃
n≥0A

n An+1 = An · A

We write ε above to denote the empty string. The equational theory of Reg(Σ),

which was first studied by Kleene [58, 59], is called the algebra of regular events.

The problem of finding a “good” axiomatization for the algebra of regular

events has a long and rich history. The finitary axiomatic systems of Salomaa

[118] are sound and complete for the equational theory of Reg(Σ), but they con-

tain special rules of inference that are unsound for other natural interpretations.

It was shown by Redko that the algebra of regular events can have no finite

equational axiomatization [113]. A refinement of this negative result to the case

of a unary alphabet was presented in [2]. Conway contributed significantly to

the development of the algebraic theory in his monograph [31], but his treat-

ment is mostly infinitary. A finitary complete axiomatization involving only

equations and equational implications was presented in [69, 70] by Kozen. This
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axiomatization has the advantage over Salomaa’s that it is sound for several

important interpretations in addition to the standard one. The axiomatizations

by Krob [87, 88] and Bloom-Ésik [16] involve infinitely many equations given

schematically.

Throughout this thesis, the notion of Kleene algebra that we use will be that

of Kozen [69, 70]. So, a Kleene algebra is an algebraic structure (K,+, ·,∗ , 0, 1) that

is a model of the equations and equational implications of Figure 1.1, where we

write x ≤ y to abbreviate x + y = y. All axioms are implicitly universally

quantified. We often elide the operation · and write xy instead of x · y. The

axioms of Figure 1.1 that do not involve ∗ are those of idempotent semirings. The

rest of the axioms say, informally, that ∗ behaves like the Kleene star operator of

language theory or the reflexive transitive operator on relations. Three useful

properties that hold in all Kleene algebras are:

sliding rule : x(yx)∗ = (xy)∗x (1.1)

denesting rule : (x+ y)∗ = x∗(yx∗)∗ (1.2)

bisimulation rule : xy = yz ⇒ x∗y = yz∗ (1.3)

The main result of [69, 70] is that the axiomatization of Figure 1.1 is sound and

complete for the algebra of regular events. That is, two regular expressions e

and f over Σ denote the same regular set in Reg(Σ) iff the equation e = f is

a logical consequence of the axioms. An equivalent way to state this result is

that Reg(Σ) is the free Kleene algebra on generators Σ. This major completeness

result has recently been formalized in the Coq proof assistant [24, 25].

Motivated from applications to program verification, a combination of

Kleene algebra with Boolean algebra was presented in [71, 72]. A Kleene alge-

bra with tests (or KAT) is a two-sorted algebra (K,B,+, ·,∗ , 0, 1,¬) with carriers
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(x+ y) + z = x+ (y + z) (xy)z = x(yz)

x+ 0 = x 1x = x

x+ y = y + x x1 = x

x+ x = x

0x = 0 1 + xx∗ ≤ x∗

x0 = 0 1 + x∗x ≤ x∗

x(y + z) = xy + xz xy ≤ y ⇒ x∗y ≤ y

(x+ y)z = xz + yz yx ≤ y ⇒ yx∗ ≤ y

Figure 1.1: Axiomatization of Kleene algebras.

B ⊆ K and ¬ : B → B such that the reduct (K,+, ·,∗ , 0, 1) is a Kleene algebra

and (B,+, ·, 0, 1,¬) is a Boolean algebra. The elements of B are called tests. The

operation ¬ is called negation and we also write p̄ to mean ¬p. The familiar pro-

gramming constructs of sequential composition, conditionals, and while loops can

be modeled in KAT as follows:

f ; g = fg if p then f else g = pf + p̄g while p do f = (pf)∗p̄

There is a semantic justification of the above encodings using the standard

relation-theoretic semantics of imperative programs [83].

1.5 Thesis Overview

The work presented in this thesis builds upon previous completeness results

on Kleene algebra [69, 70] and Kleene algebra with tests [71, 72, 82]. We study

variations and extensions of Kleene algebra that are useful for reasoning about

computer programs and other structures of computational interest. The results

that we present attest to the versatility of KA and KAT, and confirm that classical

equational reasoning is appropriate for a wide range of verification tasks. The
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technical material that follows in Chapters 2, 3 and 4 is largely based on the

publications [80, 44, 79].

In Chapter 2 we investigate extensions of KA and KAT with extra equational

assumptions. The purpose of such extensions in the context of program verifica-

tion is to capture some properties of the domain of computation that are neces-

sary for a given verification task. In more technical terms, we identify sufficient

conditions for the construction of free language models for systems of Kleene

algebra with additional equations. The construction applies to a broad class of

extensions of KA and provides a uniform approach to deductive completeness.

Our theorem is general enough to give as easy corollaries numerous known and

new completeness results.

Chapter 3 explores extensions of KAT with extra structure that enables clas-

sical constructions from the field of program schematology. It is known that

certain program transformations require a small amount of mutable state, a fea-

ture not explicitly provided by KAT. In this paper we show how to axiomatically

extend KAT with this extra feature in the form of mutable tests. The extension is

conservative and is formulated as a general commutative coproduct construc-

tion. We give several results on deductive completeness of the system, as well

as a significant example illustrating its use.

In Chapter 4 we develop a typed equational system that subsumes both iter-

ation theories (see the work of Bloom and Ésik [17]) and typed Kleene algebra

[74] in a common framework. Our approach is based on categories with bi-

nary products endowed with extra structure to handle nondeterminism. We

show that our typed variant of Kleene algebra extends conservatively the gen-

eral “(in)equational theory of parametric fixpoints,” which is characterized by

8



the standard CPO model.

Each of the Chapters 2, 3 and 4 is self-contained and can be read indepen-

dently of the rest.
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CHAPTER 2

KLEENE ALGEBRA WITH EXTRA EQUATIONS

2.1 Introduction

Kleene algebra (KA) is the algebra of regular expressions. Introduced by

Stephen Cole Kleene in 1956, it is fundamental and ubiquitous in computer sci-

ence. It has proven useful in countless applications, from program specification

and verification to the design and analysis of algorithms [7, 14, 27, 28, 29, 72, 81,

6].

One can augment KA with Booleans in a seamless way to obtain Kleene alge-

bra with tests (KAT). Unlike many other related logics for program verification,

KAT is classically based, requiring no specialized syntax or deductive appara-

tus other than classical equational logic. In practice, statements in the logic are

typically universal Horn formulas

s1 = t1 → s2 = t2 → · · · → sn = tn → s = t,

where the conclusion s = t is the main target task and the premises si = ti are

the verification conditions needed to prove it. The conclusion s = t may en-

code a partial correctness assertion, an equivalence between an optimized and

an unoptimized version of a program, or an equivalence between a program

annotated with static analysis information and the unannotated program. The

verification conditions si = ti are typically simple properties of the underlying

domain of computation that describe how atomic actions interact with atomic

assertions. They may require first-order interpreted reasoning, but are proven

once and for all, then abstracted to propositional form. The proof of the conclu-

sion s = t from the premises takes place at the propositional level in KAT. This

10



methodology affords a clean separation of the theory of the domain of computa-

tion from the program restructuring operations. It is advantageous to separate

the two levels of reasoning, because the full first-order theory of the domain of

computation may be highly undecidable, even though we may only need small

parts of it. By isolating those parts, we can often maintain decidability and de-

ductive completeness.

A typical form of premise that arises frequently in practice is a commutativity

condition pb = bp for an action p and a test b. This captures the idea that the action

p does not affect the truth of b. For example, the action pmight be an assignment

x := 3 and b might be a test y = 4, where x and y are distinct variables. It is clear

that the truth value of b is not affected by the action p, so it would be the same

before as after. But once this is established, we no longer need to know what p

and b are, but only that pb = bp. It follows by purely equational reasoning in

KAT that p1b = bp1 → · · · → pnb = bpn → qb = bq, where q is any program built

from atomic actions p1, . . . , pn.

In some instances, Horn formulas with premises of a certain form can be

reduced to the equational theory without loss of deductive completeness or de-

cision efficiency using a technique known as elimination of hypotheses [27, 82, 45].

One important class of premises for which this is possible are those of the form

s = 0. The universal Horn theory restricted to premises of this form is called

the Hoare theory, because it subsumes Hoare logic: the partial correctness asser-

tion {b}p{c} can be encoded as the equation bpc̄ = 0. Other forms that arise

frequently in practice are bp = b, which says that the action p is not necessary

if b is true, useful in optimizations to eliminate redundant actions; and pq = qp,

which says that the atomic actions p and q can occur in either order with the

11



same effect, useful in reasoning about concurrency. Unfortunately, KAT with

general commutativity assumptions pq = qp is undecidable [77].

As a case in point, the NetKAT system [6] incorporates a number of such

equational premises as part of the theory, which are taken as additional axioms

besides those of KAT. Proofs of deductive completeness and complexity as given

in [6] required extensive adaptation of the analogous proofs for KA and KAT.

Indeed, this was already the case with KAT, which was an adaptation of KA to

incorporate an embedded Boolean algebra.

Although each of these instances was studied separately, there are some

striking similarities. It turns out that the key to progress in all of them is the

identification of a suitable class of language models that characterize the equa-

tional theory of the system. A language model is a structure in which expres-

sions are interpreted as sets of elements of some monoid. The language models

should form the free models for the system at hand. For KA, a language model

is the regular sets of strings over a finite alphabet, elements of a free monoid; for

KAT, the regular sets of guarded strings; for NetKAT, the regular sets of strings

of a certain reduced form. Once a suitable class of language models can be deter-

mined, this opens the door to a systematic treatment of deductive completeness.

It is also clear from previous work [6, 39, 44, 114, 22] that the existence of coal-

gebraic decision algorithms also depends strongly on the existence of language

models (although we do not develop this connection here). The question thus

presents itself: Is there a general set of criteria that admit a uniform construc-

tion of language models and that would apply in a broad range of situations

and subsume previous ad hoc constructions? That is the subject of this chapter.

Alas, such a grand unifying framework is unlikely, given the negative results

12



of [77] and of §2.2. However, we have identified a framework that goes quite

far in this direction. It applies in the case in which the additional equational

axioms are monoid equations or partial monoid equations (as is the case in all

the examples mentioned above) and is based on a well-studied class of rewrite

systems called inverse context-free systems [23]. We give criteria in terms of these

rewrite systems that imply the existence of free language models in a wide range

of previously studied instances, as well as some new ones.

This chapter is organized as follows. In §2.2 we present preliminary defini-

tions and our negative result limiting the applicability of the method. In §2.3

we establish a connection between the classical theory of string rewriting and

Kleene algebra. We recall from [23] the definition of inverse context-free rewrite

systems and the key result that they preserve regularity. The original proof of

[23] involved an automata-theoretic construction, but we show that it can be

carried out axiomatically in KA. In §2.4 and §2.5 we give examples of total and

partial monoid equations and give a general construction that establishes com-

pleteness in those cases. These constructions are special cases of the more gen-

eral results of §2.6, but we start with them as a conceptual first step to illustrate

the ideas. However, we can already derive some interesting consequences in

these special cases. In §2.6, we establish completeness for typed monoid equa-

tions. This is the most general setting covered here. We give the completeness

proof in §2.6, along with several applications in §2.7. In §2.8 we present conclu-

sions, future work, and open problems.
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2.2 Preliminaries and a Negative Result

A monoid is an algebraic structure (M, ·, 1), where the multiplication operation ·

is associative and 1 is a left and right unit for multiplication. That is, a monoid

M satisfies

(x · y) · z = x · (y · z) 1 · x = x x · 1 = x

for all elements x, y, z in M . For a subset S ⊆ M , define 〈S〉 to be the smallest

subset of M that contains S and 1 and is closed under multiplication. We say

that S is a generator of M (or that S generates M ) if M = 〈S〉. We say that M is

finitely generated if it has a finite generator. For a set Σ of symbols, we write Σ∗

for the set of words (strings) over Σ. The monoid (Σ∗, ·, ε) consists of the carrier

Σ∗, together with the operation · of string concatenation and the empty string ε

as unit. We say that (Σ∗, ·, ε) is the free monoid generated by Σ. A more general

method of defining a monoid is by a presentation. For a presentation we specify

a set Σ of generators and a binary relation R ⊆ Σ∗ ×Σ∗ on strings. We also write

a pair (u, u′) inR as an equation u ≡ u′. Define≡R to be the smallest congruence

(equivalence relation and congruence with respect to concatenation) of Σ∗ that

contains R. The congruence class of a string u is

[u]R = {v ∈ Σ∗ | u ≡R v}.

Now, define

M = 〈Σ | R〉 = Σ∗/R

to be the monoid whose carrier is the set {[u]R | u ∈ Σ∗} of ≡R-congruence

classes. Multiplication is given by [u]R · [v]R 7→ [uv]R, and the unit is [ε]R. We

say that 〈Σ | R〉 is the (presented) monoid with generators Σ and equations R.

If Σ and R are finite, we say that they constitute a finite presentation, and that

〈Σ | R〉 is a finitely presented monoid.
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Assumption 1 (Finite Alphabet). For the rest of the chapter, even when it is not

explicitly noted, we will be assuming implicitly that an alphabet Σ of letters is

finite.

Example 2 (Commuting Letters). Let Σ = {a, b} be a finite alphabet with letters

a and b. We consider only the commutativity equation ab ≡ ba. The finitely

presented monoid

M = 〈a, b | ab ≡ ba〉

is isomorphic to the monoid N × N, where N is the set of natural numbers,

with multiplication (ma,mb), (na, nb) 7→ (ma + na,mb + nb) and unit (0, 0). The

mapping h : M → N × N is the unique monoid homomorphism given by

h(a) = (1, 0) and h(b) = (0, 1). It is also surjective and injective, thus witnessing

the claimed isomorphism.

Definition 3 (Regular Expressions and Language Interpretation). We define reg-

ular expressions over the finite alphabet Σ to be the terms given by the grammar

e ::= a ∈ Σ | 1 | 0 | e+ e | e; e | e∗.

We can interpret a regular expression as a subset of a monoid M = 〈Σ | R〉with

multiplication · and identity 1M = [ε]R. The function RM , called the language

interpretation in M , sends a regular expression to a set of elements of M :

RM(a) = {[a]R} RM(e1 + e2) = RM(e1) ∪RM(e2)

RM(1) = {1M} RM(e1; e2) = RM(e1) · RM(e2)

RM(0) = ∅ RM(e∗) =
⋃
n≥0RM(e)n

where · is lifted to subsets of M as A · B = {u · v | u ∈ A, v ∈ B}, and the n-fold

product An is defined inductively as A0 = RM(1) and An+1 = An · A.

The image of the interpretation RM together with the operations ∪, ·, ∗, ∅,

{1M} is the algebra of regular sets over M , denoted by Reg(M). If M is the free
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monoid Σ∗, then RM is the standard language interpretation R of regular ex-

pressions.

Example 4. As in Example 2, consider the two-element alphabet Σ = {a, b} and

the monoidM = 〈a, b | ab ≡ ba〉. The language (inM ) denoted by the expression

a; (b; a)∗ is

RM(a; (b; a)∗) = {[a(ba)n] | n ≥ 0} = {[an+1bn] | n ≥ 0}.

We have made use of the fact that a(ba)n ≡ an+1bn, which can be shown using

ab ≡ ba.

It is known that the algebra of regular sets Reg(Σ∗) is the free Kleene algebra

generated by Σ [70]. This is equivalent to the completeness of the axioms of KA

for the standard language interpretation R of regular expressions. That is, for

any two regular expressions e1, e2 over Σ, if R(e1) = R(e2) then KA ` e1 ≡ e2.

The question then arises if this result extends to the general case of Reg(M) for

a (finitely) presented monoid M = 〈Σ | R〉. We ask the question of whether

RM(e1) = RM(e2) implies provability of e1 ≡ e2 in a system of KA augmented

with (at least) the equations corresponding to R.

In general, the answer to the question posed in the previous paragraph is

negative. That is, there exists a finitely presented monoid M = 〈Σ | R〉 such

that the equational theory of Reg(M) is not recursively enumerable, and there-

fore not recursively axiomatizable. The equational theory of the Kleene alge-

bra Reg(M) is the set of equations between regular expressions that are true

in Reg(M) under the interpretationRM , i.e., the set

{e1 ≡ e2 | RM(e1) = RM(e2)}.

We show this negative result using the ideas developed in [73, 77]. The proof

specifies a way to construct effectively the monoid whose existence we claim.
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Theorem 5. There exists a finitely presented monoidM such that the equational

theory of Reg(M) is not recursively enumerable.

Proof. We define the Turing machineMT , which takes as input a pair of natural

numbers (n, u). The number n is interpreted as the index of a Turing machine

Mn, and the number u is meant to be given as input to the machine Mn. In

order to encode (n, u) as a string, we take as input alphabet the set Σ = {a,#}.

The pair (n, u) is encoded as the string an#au. We describe now the algorithm

thatMT implements. Let x be the input string.

1. If the input string x is not of the appropriate form an#au then halt.

2. From the index n compute the description of the Turing machineMn.

3. Simulate the executionMn(u) of the machineMn on input u. If the com-

putationMn(u) halts, then erase the tape (by filling it with blank symbols)

and halt at a special halting state.

Recall now the totality problem TOTAL = {n | Mn halts on every input}, which

is known to be Π0
2-complete, and observe the equivalence:

n ∈ TOTAL ⇐⇒ MT (n, u) halts for all u ≥ 0.

It is shown in [73, 77] that for every Turing machine M, there exists a finitely

presented monoid M = ∆∗/E, which intuitively encodes the computations of

the machine. For every input string x there exists an effectively computable

equation e1;x; e2 ≡ e such thatM halts on input x iff ∆∗/E |= e1;x; e2 ≡ e. All

expressions e1, e2, e are strings.

Suppose now that the monoid M = ∆∗/E is the one corresponding to the

machineMT described in the previous paragraph. The index n belongs to TO-
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TAL iff

Reg(M),RM |= e1; an#au; e2 ≡ e, for all u ≥ 0 ⇐⇒

Reg(M),RM |= e1; an#au; e2 ≤ e, for all u ≥ 0 ⇐⇒

Reg(M),RM |= e1; an#a∗; e2 ≤ e.

The last statement says that the equation e1; an#a∗; e2 ≤ e belongs to the equa-

tional theory of Reg(∆∗/E). It follows that this equational theory is Π0
2-hard and

therefore not recursive enumerable.

This negative result says that we can only hope to identify subclasses of

monoid presentations M = 〈Σ | R〉 such that the algebra Reg(M) of regu-

lar sets over M is axiomatizable. The idea is to first restrict attention to those

monoid presentations for which the equations can be oriented to give a con-

fluent and terminating rewrite system. This allows one to consider as canonical

representatives the irreducible strings of the congruence classes. Then, we focus

on a subclass that allows two crucial algebraic constructions: a “descendants”

automata-theoretic construction, and an “ancestors” construction.

Note that Theorem 5 is a strengthening of [77, Theorem 4.1(ii)]. The theorem

of [77] gives a uniform Π0
2-lower bound when the monoid is considered part of

the input, whereas Theorem 5 gives a Π0
2-lower bound for the theory of a fixed

monoid.

2.3 String Rewriting Systems

In this section we establish a connection between the classical theory of string

rewriting systems and Kleene algebra. More specifically, we recall a result re-
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garding the preservation of regularity: for every inverse context-free system R

and a regular set L, the set of theR-descendants of L is also regular [23]. This re-

sult involves an automata-theoretic construction, which can be modeled in KA,

because an automaton can be represented as an appropriate KA term [31, 70].

We show here that the combinatorial arguments of the construction can then

be replaced by equational reasoning in KA. As it turns out, this connection will

allow us to obtain powerful completeness metatheorems in later sections.

A string rewriting system R over a finite alphabet Σ consists of rewrite rules

`→ r, where ` and r are finite strings over Σ. This extends to the one-step rewrite

relation→R, given by x`y →R xry, for strings x, y and rule `→ r of R. If x→R y

then we say that y is an R-successor of x, and x is an R-predecessor of y. We write

→∗R for the reflexive-transitive closure of→R, which is called the rewrite relation

for R. If u, v are strings for which u →∗R v we say that v is an R-descendant of u,

and that u is an R-ancestor of v. For a set of strings L we put:

DescR(L) = {v | ∃u ∈ L. u→∗R v}

AnceR(L) = {u | ∃v ∈ L. u→∗R v}

So, DescR(L) is the set of all the R-descendants of the strings in L, and similarly

AnceR(L) is the set of all R-ancestors of the strings in L. The inverse system R−1

of R is the system that results by taking a rule r → ` for every rule `→ r of R. If

u is an R-ancestor of a string v, then u is an R−1-descendant of v. We define the

symmetric relation

↔R = {(xuy, xvy) | u→ v or v → u is an R-rule}.

We write ↔∗R for the reflexive transitive closure of ↔R. The relation ↔∗R is an

equivalence relation on Σ∗. In fact, it is a left and right congruence, because it

satisfies additionally for all strings u, v, x, y: u ↔∗R v implies that xuy ↔∗R xvy.
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Equivalently, we can define ↔∗R to be the smallest congruence on Σ∗ that con-

tains {(u, v) | u→ v is an R-rule}. The congruence class of a string u is denoted

by [u].

Remark 6. Let R be a string rewrite system over Σ that has rules of the form

a→ r, where a ∈ Σ is a single letter, as well as rules of the form ε→ r. Let xy be

a string. We claim that everyR-descendant of xy is of the form uv, where u (resp.

v) is an R-descendant of x (resp. y). This claim can be expressed equivalently

with the equation

DescR(xy) = DescR(x) · DescR(y).

We can then prove its generalization DescR(L ·L′) = DescR(L) ·DescR(L′) to sets

of strings.

Lemma 7. Let R be a rewrite system consisting of rules of the form ε → r and

a→ r, where a is a letter. Assume further that all sets DescR(ε) and DescR(a) are

regular with

R(eε) = DescR(ε) R(ea) = DescR(a)

for some regular expressions eε and ea. Consider the substitution θ, defined

inductively by

θ(a) = ea θ(e1 + e2) = θ(e1) + θ(e2)

θ(1) = eε θ(e1; e2) = θ(e1); θ(e2)

θ(0) = 0 θ(e∗) = eε + θ(e)∗

Then, DescR(R(e)) = R(θ(e)) for every regular expression e. For the particular

case where DescR(ε) = {ε}, we can simplify the substitution by putting θ(e∗) =

θ(e)∗.

Proof. The proof is by induction on the structure of e. We only give the argument
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for the case of e∗, because it is the most interesting one. First, we claim that

DescR(R(e)n) = R(θ(e))n for every n > 0.

This is shown by induction on n, using the property of Remark 6. Now, we have

for e∗:

DescR(R(e∗)) = DescR({ε} ∪
⋃
n>0R(e)n) [def. ofR]

= DescR(ε) ∪
⋃
n>0DescR(R(e)n) [def. of DescR]

= R(eε) ∪
⋃
n>0R(θ(e))n [hyp. & claim]

= R(eε) ∪ {ε} ∪
⋃
n>0R(θ(e))n [ε ∈ R(eε)]

= R(eε) ∪R(θ(e)∗), [def. ofR]

which is equal toR(eε+θ(e)
∗) = R(θ(e∗)). In the fourth equality above we have

made use of the fact that ε→∗R ε, which implies that ε ∈ DescR(ε) = R(eε).

Example 8. Let R be the rewrite system over Σ = {a, b} that consists of the

single rewrite rule a→ aa. The set DescR(a) = {an | n > 0} is regular and equal

to R(ea), where ea = a; a∗. Clearly, DescR(b) = {b} is also regular and we put

eb = b. We consider the (simplified) substitution θ of Lemma 7, which gives us

θ(a; (b; a)∗) = a; a∗; (b; a; a∗)∗.

Lemma 7 now says that DescR(R(a; (b; a)∗)) = R(a; a∗; (b; a; a∗)∗).

Example 9. Suppose that the rewrite system R over Σ = {a, b} consists of the

rewrite rule ε → aa. We observe that the set DescR(ε) = {(aa)n | n ≥ 0} is

regular and equal toR(eε), where eε = (a; a)∗. Moreover, we see that

DescR(a) = {a(aa)n | n ≥ 0} DescR(b) = {(aa)nb(aa)n | n ≥ 0}

are regular. We put ea = a; eε and eb = eε; b; eε. The hypotheses of Lemma 7 are

satisfied.

Let R be a rewrite system. We say that R is terminating if there is no infinite
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rewrite chain x0 →R x1 →R x2 →R · · · . If R has rules of the form ` → r with

|r| < |`| then it is terminating, because every rule application strictly reduces

the length of the string. A string x is called R-irreducible if no rule of R applies

to it, that is, there is no y with x →R y. We say that R is confluent if u →∗R x

and u →∗R y imply that there exists z with x →∗R z and y →∗R z. It is said that

R has the Church-Rosser property (we also say that “R is Church-Rosser”) if for

all strings x, y with x ↔∗R y there exists z such that x →∗R z and y →∗R z. It is a

standard result that confluence and the Church-Rosser property are equivalent

[23]. A system R is said to be locally (or weakly) confluent if for all strings u, x, y

with u→R x and u→R y, there exists a string z such that x→∗R z and y →∗R z. If

R is both locally confluent and terminating, then R is confluent [23, 12].

Suppose that R is confluent and terminating. We map each string u to the

unique R-irreducible string nfR(u) that results from rewriting u as much as pos-

sible. For strings u, v, it holds that u ↔∗R v iff nfR(u) = nfR(v). So, two strings

are congruent iff they can be rewritten to the same R-irreducible. For every con-

gruence class [u] of↔∗R, we choose as canonical representative (normal form) the

R-irreducible string nfR(u).

Note 10. IfR is a terminating rewrite system, then it is easy to see that the empty

string ε is irreducible. Assume for contradiction that R has a rule ε→R x. Then

we can obtain the infinite rewrite chain ε →R x →R xx →R xxx →R · · · which

contradicts termination.

Definition 11 (Total Coalesced Product). Let R be a confluent and terminating

rewrite system over Σ, and IR be the set of R-irreducible strings. Define the

operation � on IR by

u � v = nfR(uv).
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We call this operation the coalesced product with respect to R. We also lift the

operation to sets of R-irreducible strings as A �B = {u � v | u ∈ A, v ∈ B}.

The structure (IR, �, ε), as defined above, is a monoid. In fact, it is isomorphic

to the monoid 〈Σ | R〉, where R in the presentation are the equations ` ≡ r

corresponding to the rules `→ r of the system.

Example 12. Let R be the rewrite system over Σ = {a, b} with the single rule

ba → ab. The R-irreducible strings are IR = {ambn | m,n ≥ 0}. The total

coalesced product is

akbl � ambn = nfR(akblambn) = ak+mbl+n.

The monoid (IR, �, ε) is isomorphic to 〈Σ | ab ≡ ba〉.

Definition 13 (C and G ). Let R be an arbitrary string rewrite system over the

alphabet Σ. For a language L ⊆ Σ∗, we define

CR(L) =
⋃
u∈L[u] = {v | ∃u ∈ L. v ↔∗R u}.

Assume additionally that R is confluent and terminating, so that the function

nfR is well-defined. For L ⊆ Σ∗, we define GR(L) = {nfR(u) | u ∈ L}.

The intuition for the above definitions is that the map CR closes a set of

strings under the congruence relation ↔∗R, and GR reduces every string to its

normal form (R-irreducible). We note that CR(L), which is a set of strings, is not

equal to {[u] | u ∈ L}, which is a set of equivalence classes of strings. Equiva-

lently, we can define CR(L) to be the smallest set that contains L and is closed

under↔∗R.

Lemma 14 (C and G ). For a confluent and terminating rewrite system R over Σ:

1. CR(L) = CR(GR(L)), for a language L ⊆ Σ∗.
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2. GR(L) = GR(CR(L)), for a language L ⊆ Σ∗.

3. GR(L) = GR(L′) iff CR(L) = CR(L′), for languages L,L′ ⊆ Σ∗.

4. CR(L) = AnceR(DescR(L)), for a language L ⊆ Σ∗.

Proof. For Part (1), we use the fact that u ↔∗R nfR(u), which implies [u] =

[nfR(u)]. So,

CR(L) =
⋃
{[u] | u ∈ L} =

⋃
{[nfR(u)] | u ∈ L}

=
⋃
{[v] | v ∈ GR(L)} = CR(GR(L)).

For Part (2), we first notice that L ⊆ CR(L) and hence

GR(L) ⊆ GR(CR(L)) = {nfR(u) | u ∈ CR(L)}.

For the reverse containment, consider an arbitrary u ∈ CR(L). We have to show

that nfR(u) is in GR(L). Since u ∈ CR(L), there exists some u′ ∈ Lwith u↔∗R u′. It

follows that nfR(u) = nfR(u′) ∈ GR(L). Part (3) is an immediate consequence of

(1) and (2). Finally, the idea for Part (4) is that by closing L underR-descendants

we obtain the normal forms. So, if we also close under R-ancestors we get the

congruence class of every element of L.

A rewrite system R is said to preserve regularity if for every regular language

L, the R-descendants DescR(L) form a regular set. A system R is called inverse

context-free if it only contains rules of the form ` → r, where |r| ≤ 1. That is,

every right-hand side of a rule is either a single letter or the empty string. A

classical result of the theory of string rewriting is that inverse context-free sys-

tems preserve regularity (see Chapter 4 of [23] for a detailed proof). The proof of

this fact uses a construction on finite automata, which we briefly present here.

We will be referring to it as the descendants construction. Suppose that L is a

regular language, recognized by an automaton A. The automaton is possibly
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nondeterministic and it may have ε-transitions. We will describe a sequence

of transformations on A. When the sequence reaches a fixpoint, we obtain an

automaton (nondeterministic with ε-transitions) that recognizes DescR(L).

• Suppose that the system R has a rule ` → a, where a is a single letter, and

` = `1`2 · · · `m is a string of length m. We assume that there is an `-path from

the state q0 to the state qn of the automaton. That is, a sequence

q0
x1−→ q1

x2−→ q2
x3−→ · · · xn−1−−−→ qn−1

xn−→ qn,

where each xi is a letter or ε, x1 · x2 · . . . · xn = `, and each qi−1
xi−→ qi is

a transition of the automaton. We add the transition q0
a−→ qn. The idea is

that if the automaton accepts the string x`y, then it should also accept the

R-descendant xay.

• Similarly, suppose that the system R has a rule ` → ε, where ε is the empty

string, and that there is an `-path from the state q0 to the state qn. Then, we

add the ε-transition q0
ε−→ qn to the transition table of the automaton.

This process is iterated until no new transitions are added. We know that a

fixpoint is always reached because there are only finitely many transitions that

a finite automaton can have. The resulting automaton accepts exactly the set of

R-descendants DescR(L).

Theorem 15 (The Descendants Construction Algebraically). Let R be an in-

verse context-free rewrite system and e a regular expression whose interpreta-

tion is L = R(e). We can construct effectively a new regular expression ê s.t.

KAR ` e ≡ ê and R(ê) = DescR(L).

KAR is the system KA augmented with an equation ` ≡ r for every rewrite rule

`→ r of R.
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Proof. In [31] it is shown how to perform the construction of Kleene’s theo-

rem, which builds a finite-state automaton from a given regular expression,

in terms of matrices. The automaton is possibly nondeterministic and may

have ε-transitions, so for the expression e there is a matrix form u;M∗; v with

KA ` e ≡ u;M∗; v, where u is a 1×n matrix, M is a n×n matrix, and v is a n× 1

matrix. The matrix M is of the form

M = M(ε) +
∑

a a ·M(a),

where a ranges over the alphabet Σ and a ·− denotes scalar multiplication. Each

n× n matrix M(a) encodes the transitions of the automaton on input symbol a.

The entries of M(a) are either 0 or 1, hence the entries of a ·M(a) are either 0 or

a. Similarly, the entries of M(ε) are either 0 or 1 and they give the ε-transitions

of the automaton.

We will show in KAR that for a transformation step from the automaton

u;M∗; v to the automaton u;N∗; v we have that KAR ` u;M∗; v ≡ u;N∗; v.

Suppose that ` → a is a rule of R, ` = `1`2 · · · `m, and there is an `-path from q0

to qn in the automaton:

q0
x1−→ q1

x2−→ · · · xn−1−→ qn−1
xn−→ qn,

with x1 ·x2 · · ·xn−1 ·xn = `. Since each qi−1
xi−→ qi is a transition of the automaton,

we get

row(qi−1);M(xi); col(qi) ≡ 1.

The above equation says that the (qi−1, qi)-indexed entry of M(xi) is equal to

1. We write row(q) for the row vector (1 × n matrix) that contains 1 at the q-

indexed position and 0 in the rest of the positions. Similarly, col(q) is the column

vector (n × 1 matrix) with 1 at position q and 0 elsewhere. It is easy to see that

row(q); col(q) ≡ 1, and col(qi); row(qj) is equal to the n×nmatrix with 1 at position
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(qi, qj) and 0 elsewhere. So, the inequality

col(qi−1); row(qi) ≤M(xi)

is another way of expressing the fact that qi−1
xi−→ qi is a transition of the au-

tomaton. We define N(a) so that N(a) ≡ M(a) + col(q0); row(qn). This means

that

N = M + a · col(q0); row(qn).

Since M ≤ N , it follows by monotonicity of ∗ that M∗ ≤ N∗ and hence

u;M∗; v ≤ u;N∗; v.

Now, we have to show that u;N∗; v ≤ u;M∗; v, which is implied by N∗ ≤

M∗. In order to make our exposition more understandable, we give the proof

using a specific example. Suppose we have the rule ` → a, where ` = ab, and

the `-path we consider is

q0
a−→ q1

ε−→ q2
b−→ q3.

We add the transition q0
a−→ q3 to the automaton. So, N(a) ≡ M(a) +

col(q0); row(q3), and N ≡ M + a · col(q0); row(q3). Observe the provability of

the following:

a · col(q0); row(q3) ≡ a · col(q0); row(q1); col(q1); row(q2); col(q2); row(q3)

≤ a ·M(x1);M(x2);M(x3)

≡ a; b ·M(a);M(ε);M(b)

≡ aM(a);M(ε); bM(b)

≤M ;M ;M.

In the second equation above we have used the axiom ab ≡ a, because the rule

ab → a is in R. It follows that N ≤ M + M ;M ;M , and therefore N∗ ≤ (M +

M ;M ;M)∗ ≤M∗.
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If the original automaton form is u;M∗0 ; v, the descendants construction

gives us a finite sequence of matrix forms u;M∗0 ; v, u;M∗1 ; v, . . . , u;M∗k ; v with

KAR ` u;M∗0 ; v ≡ u;M∗1 ; v ≡ · · · ≡ u;M∗k ; v.

No new transition can be added to the last automaton. So, the last automaton

form of the sequence gives us all the descendants ofR(e). That is,

R(u;M∗k ; v) = DescR(R(u;M∗0 ; v)) = DescR(R(e)),

because KA ` e ≡ u;M∗0 ; v. We put ê = u;M∗k ; v, and the proof is complete.

Theorem 15 says that the descendants construction, which is combinatorial,

can be modeled algebraically in the system of KA with extra equations that

correspond to the rules of the rewrite system. This is a central technical result

that will be useful later for establishing our completeness theorems.

2.4 Completeness: Monoid Equations

In this section we present our first completeness metatheorem, from which we

can prove the existence of free language models for systems of KA with extra

monoid equations. Our metatheorem is not only a conceptual first step towards

the more general partial monoid and typed monoid cases, which we investigate

in §2.5 and §2.6 respectively, but it also allows us to obtain previously unknown

completeness results. As a concrete novel application, think of the assignment

statement x := c, where c is a constant. The action x := c is idempotent, meaning

that the effect of the program x := c;x := c is the same as the effect of x := c.

We express this fact with the monoid equation aa ≡ a, where a is a single-letter

abstraction of the assignment. KA can be augmented with any number of such
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idempotence equations, and our metatheorem implies the existence of a free

language model (see Example 21).

Definition 16 (Language Interpretations G and C). Let R be a confluent and ter-

minating rewrite system. The corresponding coalesced product is �. We define

the function GR that sends a regular expression to a set of R-irreducibles:

GR(a) = {nfR(a)} GR(e1 + e2) = GR(e1) ∪ GR(e2)

GR(0) = ∅ GR(e1; e2) = GR(e1) � GR(e2)

GR(1) = {ε} GR(e∗) =
⋃
n≥0GR(e)〈n〉

where, for a set A of R-irreducibles, A〈n〉 is defined by A〈0〉 = GR(1) and A〈n+1〉 =

A〈n〉 � A. We also define the interpretation CR(e) = CR(R(e)) =
⋃
u∈R(e)[u].

Remark 17. Let R be a confluent and terminating system over Σ, and M = 〈Σ |

R〉 be the corresponding monoid. For a regular expression e, we have that

RM(e) = {[u] | u ∈ GR(e)} and GR(e) = {nfR(u) | [u] ∈ RM(e)}.

It follows that RM(e1) = RM(e2) iff GR(e1) = GR(e2). That is, RM and GR have

the same equational theory. So, our investigations of completeness can be w.r.t.

GR instead ofRM .

Lemma 18 (G and C). For a confluent and terminating rewrite system R over Σ:

1. GR(e) = GR(R(e)), for an expression e.

2. GR(e) = GR(e′) iff CR(e) = CR(e′), for expressions e, e′.

3. CR(e) = AnceR(DescR(R(e))), for an expression e.

Proof. Part (1) is shown by induction on the structure of e. For parts (2) and (3)

we make use of Lemma 14.

Definition 19 (Well-Behaved Rewrite System). Let R be a rewrite system over

Σ. We say that R is well-behaved if it satisfies the following properties:
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1. R consists of rules of the form `→ r with |r| ≤ 1 and |`| > 1.

2. R is confluent.

3. Regularity: For every x in Σ∪{ε}, theR-ancestors AnceR(x) = {u | u→∗R x}

of x form a regular setR(ex) for some regular expression ex.

4. Provability: For every x in Σ ∪ {ε}, the equation ex ≡ x is provable in KAR.

For x = ε the equation instantiates to eε ≡ 1.

Condition (1) implies that every rule application strictly reduces the length of a

string. That is, R is length-reducing and hence terminating. So, given Condition

(1), we can require equivalently that R is locally confluent instead of having

Condition (2). This result is known as Newman’s Lemma (see [23, 12]). Recall

that KAR is the system of KA extended with equations corresponding to the

rules of R.

Intuitively, the definition of well-behavedness for R enables two important

algebraic constructions. First, the special form of the rules allows the automata-

theoretic descendants construction (described in §2.3), which can be modeled in

KA, because automata can be encoded as matrices. Then, the regularity require-

ment for the sets of R-ancestors implies that we can apply a homomorphism to

obtain all the ancestors of a regular set. We can thus “close” a regular expression

under the congruence induced by R.

Theorem 20 (Completeness). Let R be a well-behaved rewrite system over Σ.

For all expressions e1 and e2, GR(e1) = GR(e2) implies that KAR ` e1 ≡ e2.

Proof. Consider the following transformation steps on an arbitrary regular ex-

pression e:
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1. Descendants Construction: As described in Theorem 15 we obtain an ex-

pression e′ with KAR ` e ≡ e′ andR(e′) = DescR(R(e)).

2. Ancestors Construction: We describe below a transformation that gives us a

new regular expression e′′ with KAR ` e′ ≡ e′′ andR(e′′) = AnceR(R(e′)).

We thus have KAR ` e ≡ e′′ and R(e′′) = AnceR(DescR(R(e))), which is equal to

CR(R(e)) by Lemma 14(4). It follows thatR(e′′) = CR(e) (see Definition 16).

Now, we apply the constructions (1) and (2) described above to the expres-

sions e1 and e2 to obtain the expressions e′′1 and e′′2 with:

KAR ` e1 ≡ e′′1 CR(e1) = R(e′′1) KAR ` e2 ≡ e′′2 CR(e2) = R(e′′2)

From the hypothesis GR(e1) = GR(e2) and Lemma 18(3) we get that CR(e1) =

CR(e2). It follows that R(e′′1) = R(e′′2), and by completeness of KA for the stan-

dard interpretation R [70] we get that KA ` e′′1 ≡ e′′2. Since we have proved in

KAR the equations

e1 ≡ e′′1 e′′1 ≡ e′′2 e′′2 ≡ e2

we conclude by transitivity that KAR ` e1 ≡ e2.

It remains to describe Step (2) of the above transformation to complete the

proof. If u is an R-ancestor of a string v, then u is an R−1-descendant of v (and

conversely). Since R is well-behaved, the system R−1 only contains rules of the

form ε → r and a → r, where a is a letter. Moreover, for every x in Σ ∪ {ε} we

have:

AnceR(x) = DescR−1(x) = R(ex)

for some expression ex with KAR ` ex ≡ x. Define the substitution θ as in

Lemma 7. So,

AnceR(R(e′)) = DescR−1(R(e′)) = R(θ(e′)).
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We put e′′ = θ(e′). We have already shown thatR(e′′) = AnceR(R(e′)). It remains

to see that KAR ` e′ ≡ e′′ = θ(e′), which is implied by the provability assumption

KAR ` ex ≡ x, for every x in Σ ∪ {ε} (since R is well-behaved).

We will see now how the general completeness meta-theorem we have

shown above (Theorem 20) can be used to obtain several concrete completeness

results for the regular algebras of some simple finitely presented monoids.

Example 21 (Idempotence Hypotheses). Consider the monoid M = 〈a, b | aa ≡

a〉. The rewrite system R contains only the rule aa → a. In order to invoke

Theorem 20 we have to verify that R is well-behaved (Definition 19):

• For the only rule ` = aa→ a = r of R, we have that |r| = 1 and |`| > 1.

• To show confluence of R, it is sufficient to show local confluence, since R is

terminating. We have the following critical-pair lemma: Suppose that u→ x

and u → y. If x = y, we are done. If x 6= y, then u, x, y must be of the

following forms:

u = v1a
m+1v2a

n+1v3 x = v1a
mv2a

n+1v3 y = v1a
m+1v2a

nv3

Notice now that x, y → v1a
mv2a

nv3, which establishes local confluence.

• For the R-ancestors of the letter a, we see that AnceR(a) = {an | n > 0} =

R(ea), where ea = a; a∗. Reasoning in KAR we show that a ≤ a; a∗ and

a; a∗ ≤ a⇐= a; a ≤ a⇐= a; a ≡ a.

We have thus shown that KAR ` ea ≡ a.

• For ε and the letter b, we have AnceR(b) = {b} = R(b) and AnceR(ε) = {ε} =

R(1).

Since the rewrite system R satisfies the conditions of Theorem 20, we get com-

pleteness of KA together with the equation a; a ≡ a for the interpretations GR
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andRM .

Example 22 (Self-Inverse Action). We consider the monoid M = 〈a, b | bb ≡ ε〉

and the rewrite system R with the rule bb→ ε. We verify that R is well-behaved

(Definition 19). It is easy to observe that the rules of R are of the appropriate

form, and that R is confluent. For the regularity and provability assumption,

we have AnceR(ε) = {(bb)n | n ≥ 0} = R(eb), where eb = (b; b)∗. Reasoning in

KAR we have eb ≡ (b; b)∗ ≡ 1∗ ≡ 1. By Theorem 20, we get completeness of KA

extended with b; b ≡ 1 for the interpretations GR andRM .

2.5 Completeness: Partial Monoid Equations

We would like to generalize our result in a way that allows us to designate

certain strings as being non-well-formed or undefined. Any string with a non-

well-formed substring has to be discarded from the interpretation. For a string

a1 · · · ak over the alphabet, we declare it to be non-well-formed using the equa-

tion a1 · · · ak ≡ ⊥, where ⊥ is a special “undefined” symbol not in the alphabet.

We define a partial monoid to be an algebraic structure (M, ·, 1M ,⊥M) satisfy-

ing the monoid axioms, as well as the equations x · ⊥M = ⊥M and ⊥M · x = ⊥M .

The identity is 1M , and⊥M is called the undefined element ofM . In a presentation

of a partial monoid

M⊥ = 〈Σ | x1 ≡ y1, x2 ≡ y2, . . . , z1 ≡ ⊥, z2 ≡ ⊥, . . .〉

we allow equations x ≡ y between strings over Σ (call the collection of these R),

as well as equations of the form z ≡ ⊥, where z is a string over Σ (⊥ is not in Σ).

Call R⊥ the set of all equations of the presentation. In order to give a concrete

description of the partial monoid, we consider the strings over the extended

33



alphabet Σ∪{⊥}. Let ∼ be the smallest congruence on (Σ∪{⊥})∗ that contains

R⊥, as well as the axioms x⊥ ≡ ⊥ and ⊥x ≡ ⊥ for every x in Σ ∪ {⊥}. The

partial monoid M⊥ is the monoid of strings (Σ ∪ {⊥})∗ modulo the congruence

∼. The identity is the ∼-congruence class [ε], and the undefined element is the

class [⊥].

Assumption 23. We collect a list of assumptions for (Σ, R, Z), where Σ is a fi-

nite alphabet, R is a rewrite system over Σ, and Z ⊆ Σ∗ is a nonempty set of

“undefined” strings.

1. R is confluent and terminating.

2. Seamlessness property: If xzy is a string with z ∈ Z, then every R-

successor of xzy is of the form x′z′y′ with z′ ∈ Z. In other words, if x

has a substring in Z then every R-successor of x has a substring in Z.

Intuitively, seamlessness says that if a string contains a non-well-formed sub-

string, then no R-rewriting can make it well-formed. So, R interacts well with

undefinedness.

Note 24. Without loss of generality we can require that the undefined strings of

Z are nonempty, i.e., not equal to ε. This is because if ε ∈ Z, then the monoids

we define later become trivial (the identity is equal to the undefined element).

Example 25. Consider the alphabet Σ = {a, ā, b, b̄} and the rewrite system R

with rules aa → a and bb → b. The set Z = {aā, bb̄} contains the undefined

strings. Arguing as in Example 21 we see that R is terminating and confluent.

For the seamlessness property, we consider the case of a substring aā (the case

for bb̄ is analogous). Every R-rewriting of xaāy gives a successor x′aāy′, so we

are done. Therefore, (Σ, R, Z) satisfies Assumption 23.

34



If we added the rule ba → b to R, then the seamlessness property would be

violated, because baā→ bā by applying the newly introduced rule.

Definition 26 (Partial Coalesced Product). Let (Σ, R, Z) satisfy Assumption 23.

Let IR ⊆ Σ∗ be the set R-irreducible strings and JR = IR \ (Σ∗ · Z · Σ∗). That is,

JR = {u ∈ Σ∗ | u is R-irreducible and has no substring in Z}.

Define the (partial) coalesced product � on elements of JR as follows:

u � v =


nfR(uv), if nfR(uv) has no substring in Z;

⊥, if nfR(uv) has a substring in Z.

As defined, � is of type JR × JR → JR ∪ {⊥}. Extend it to a binary operation on

JR ∪ {⊥}:

⊥ � ⊥ = ⊥ u � ⊥ = ⊥ ⊥ � u = ⊥

for every u ∈ JR. We lift the product � into a total operation on subsets of JR:

A �B = {u � v | u � v 6= ⊥, u ∈ A, v ∈ B},

whereA,B ⊆ JR. The structure (JR∪{⊥}, �, ε,⊥) is said to be the partial monoid

(see Lemma 27 below) that corresponds to the triple (Σ, R, Z).

Lemma 27 (Partial Monoid From Rewrite System). Let (Σ, R, Z) satisfy As-

sumption 23. Then, the structure (JR ∪ {⊥}, �, ε,⊥) is a partial monoid and

is isomorphic to 〈Σ | R⊥〉, where R⊥ contains equations for the rules of R and

an equation z ≡ ⊥ for every z ∈ Z.

Proof. The proof that JR∪{⊥} is a partial monoid relies on properties of normal

forms. Now, we define the map h : (Σ ∪ {⊥})∗ → JR ∪ {⊥} as follows:

h(x) =


⊥, if x contains an occurrence of ⊥

⊥, if x ∈ Σ∗ and nfR(x) has a substring in Z

nfR(x), if x ∈ Σ∗ and nfR(x) has no substring in Z
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Claim 28. For all strings x, y over Σ ∪ {⊥}, it holds that h(xy) = h(x) � h(y).

Recall that ∼ is the smallest relation that contains the pairs (u, v) of R, the pairs

(z,⊥) for all z ∈ Z, the partial monoid axioms (x⊥,⊥) and (⊥x,⊥) for x ∈

Σ∪{⊥}, and is closed under the rules of equational logic (reflexivity, symmetry,

transitivity, congruence).

Claim 29. For every pair (x, y) of ∼we have that h(x) = h(y).

The above claim asserts that h has the same value on members of an equivalence

class of∼. So, we define the map ĥ : (Σ∪{⊥})∗/∼ → JR∪{⊥} by [x] 7→ h(x). We

also claim that ĥ is a partial monoid homomorphism from 〈Σ | R⊥〉 to JR ∪ {⊥}.

Indeed, we have:

ĥ([x] · [y]) = ĥ([xy]) = h(xy) = h(x) � h(y) = ĥ([x]) � ĥ([y]),

as well as ĥ([ε]) = h(ε) = ε and ĥ([⊥]) = h(⊥) = ⊥. That is, ĥ commutes with

the partial monoid operations. Clearly, ĥ is surjective. Finally, we claim that

it is injective. Consider strings x, y over Σ ∪ {⊥} with ĥ([x]) = ĥ([y]), that is,

h(x) = h(y).

− If h(x) = h(y) = ⊥ then x ∼ ⊥ and y ∼ ⊥, hence x ∼ y and [x] = [y].

− If h(x), h(y) 6= ⊥ then nfR(x) = nfR(y), hence x ∼ y and [x] = [y].

We have thus established that ĥ is an isomorphism.

Definition 30 (Language Interpretations). Suppose that (Σ, R, Z) satisfies As-

sumption 23. Define [⊥]Σ = AnceR(Σ∗ · Z · Σ∗) and for a string u over Σ:

[u]Σ =


AnceR(nfR(u)), if nfR(u) has no substring in Z

[⊥]Σ, if nfR(u) has a substring in Z
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For a language L ⊆ Σ∗ we define G⊥(L) ⊆ JR and C⊥(L) ⊆ Σ∗ as follows:

G⊥(L) = {nfR(u) | u ∈ L} \ [⊥]Σ C⊥(L) = [⊥]Σ ∪
⋃
u∈L[u]Σ

Now, the interpretation G⊥ sends a regular expression to a subset of JR:

G⊥(a) = G⊥({a}) G⊥(e1 + e2) = G⊥(e1) ∪ G⊥(e2)

G⊥(0) = ∅ G⊥(e1; e2) = G⊥(e1) � G⊥(e2)

G⊥(1) = {ε} G⊥(e∗) =
⋃
n≥0G⊥(e)〈n〉

where A〈0〉 = G⊥(1) and A〈n+1〉 = A〈n〉 � A. Define C⊥(e) = C⊥(R(e)). The

interpretation G⊥ discards the undefined strings, but C⊥ adds them all in.

Lemma 31. Let (Σ, R, Z) satisfy Assumption 23. For all languages L,L′ ⊆ Σ∗:

1. C⊥(L) = C⊥(G⊥(L)).

2. G⊥(L) = G⊥(C⊥(L)).

3. G⊥(L) = G⊥(L′) iff C⊥(L) = C⊥(L′).

4. C⊥(L) = AnceR(DescR(L)) ∪ [⊥]Σ.

The above are the analog of Lemma 14. As an analog of Lemma 18, we have:

5. G⊥(e) = G⊥(R(e)), for an expression e.

6. G⊥(e) = G⊥(e′) iff C⊥(e) = C⊥(e′), for expressions e, e′.

7. C⊥(e) = AnceR(DescR(R(e))) ∪ [⊥]Σ, for an expression e.

Proof. Similar to the proofs of Lemma 14 and Lemma 18.

Definition 32 (Well-Behaved). Let (Σ, R, Z) satisfy Assumption 23. We say that

it is well-behaved if it satisfies additionally the following properties:

1. R consists of rules of the form `→ r with |r| ≤ 1 and |`| > 1.

2. Regularity: For every x in Σ∪{ε}, theR-ancestors AnceR(x) = {u | u→∗R x}

of x form a regular setR(ex) for some regular expression ex.
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3. Regular undefined set: There is a regular expression eZ withR(eZ) = Z.

4. Provability: For every x in Σ ∪ {ε}, the equation ex ≡ x is provable in KAR.

We will write KA⊥ for the system KAR extended with the equation eZ ≡ 0. No-

tice that if (Σ, R, Z) is well-behaved, then so is R (in the sense of Definition 19).

Lemma 33 (Undefined Class). Let (Σ, R, Z) be well-behaved. The set [⊥]Σ of

undefined strings is regular. For the corresponding expression e⊥ is holds that

KA⊥ ` e⊥ ≡ 0.

Proof. Recall that [⊥]Σ = AnceR(Σ∗ · Z · Σ∗) from Definition 30. Part of the

definition of well-behavedness is that Z is regular, where R(eZ) = Z for some

expression eZ . It follows that the set Σ∗·Z ·Σ∗ is also regular. The corresponding

expression is e = eU ; eZ ; eU , where eU = (
∑

a a)∗ is the universal expression with

R(eU) = Σ∗. Since the rewrite system R is well-behaved, the inverse system

R−1 satisfies the conditions of Lemma 7. Let θ be the substitution defined in the

lemma. We then have

[⊥]Σ = AnceR(R(e)) = R(θ(e)).

Since R is well-behaved, we get from the provability condition that KAR ` e ≡

θ(e). Finally, we put e⊥ = θ(e). Reasoning in KA⊥, we prove the equations:

e⊥ ≡ θ(e) ≡ e ≡ eU ; eZ ; eU ≡ eU ; 0; eU ≡ 0.

We have thus established KA⊥ ` e⊥ ≡ 0, and the proof is complete.

Theorem 34 (Completeness). Suppose that (Σ, R, Z) is well-behaved. For all

expressions e1 and e2, G⊥(e1) = G⊥(e2) implies that KA⊥ ` e1 ≡ e2.

Proof. Consider the following transformation steps on an arbitrary regular ex-

pression e:

38



1. Descendants Construction: As described in Theorem 15, we get an expres-

sion e′ with KAR ` e ≡ e′ andR(e′) = DescR(R(e)).

2. Ancestors Construction: Define the substitution θ by ε 7→ eε and a 7→ ea for

every letter a ∈ Σ. As in Theorem 20: KAR ` e′ ≡ θ(e′) and R(θ(e′)) =

AnceR(R(e′)).

3. Undefined Class: It was shown in Lemma 33 that there is an expression e⊥

such that KA⊥ ` e⊥ ≡ 0 andR(e⊥) = [⊥]Σ. We put ê = θ(e′) + e⊥.

Combining the above steps we get KA⊥ ` e ≡ e′ ≡ θ(e′) ≡ θ(e′) + e⊥ = ê, and

R(ê) = R(θ(e′)) ∪R(e⊥) = AnceR(DescR(R(e))) ∪ [⊥]Σ,

which is equal to C⊥(e) using Lemma 31(7). We have thus shown that R(ê) =

C⊥(e). We apply this construction to the expressions e1 and e2 to obtain ê1 and

ê2 with:

KA⊥ ` e1 ≡ ê1 C⊥(e1) = R(ê1) KA⊥ ` e2 ≡ ê2 C⊥(e2) = R(ê2)

The hypothesis G⊥(e1) = G⊥(e2) and Lemma 31(6) imply C⊥(e1) = C⊥(e2). It

follows that R(ê1) = R(ê2) and by completeness of KA for the interpretation R

we get that KA ` ê1 ≡ ê2. We conclude that KA⊥ ` e1 ≡ e2.

2.6 Completeness: Typed Monoid Equations

We further generalize the partial monoid setting of §2.5 by assuming even more

structure on the strings and the rewrite system. One major difference from the

partial monoid case is the introduction of a new category of primitive symbols,

the subidentities, which allow the encoding of Booleans. Using this general typed

framework, we will show later how to cover several examples, among which:

plain KAT, KAT with simple Hoare hypotheses b; p; c ≡ 0, KAT with hypotheses
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c; p ≡ c, and NetKAT. These examples attest to the generality and wide applica-

bility of our technique.

Assumption 35. We collect a list of assumptions for (P, Id , R, Z). The sets P and

Id are finite alphabets which we call the action symbols and subidentities respec-

tively. We write p, q, r, . . . to vary over actions symbols, and α, β, γ, . . . to vary

over subidentities. We put

Σ = Id ∪ {αpβ | p ∈ P and α, β ∈ Id},

and we call Σ the aggregated alphabet. We write a, b, c, . . . to vary over arbitrary

letters of Σ. Examples of nonempty strings over Σ are: α, αα, αpβ, αβ, ααpβ,

αβpγ δ, αpβ βqγ γ, and so on. Σ+ denotes the set of nonempty strings over Σ.

Let R be a string rewrite system over Σ, and Z ⊆ Σ+ be a nonempty set of

nonempty strings (the “undefined” ones). We require the following:

1. The rules of R involve nonempty strings. R includes at least the rules:

αα→ α ααpβ → αpβ αpβ β → αpβ

for all subidentites α, β ∈ Id and every action symbol p ∈ P .

2. R is confluent and terminating.

3. The set Z of undefined strings contains at least the following:

αβ (α 6= β) αβpγ (α 6= β) αpβ γ (β 6= γ) αpβ γqδ (β 6= γ)

4. Seamlessness property: If x ∈ Σ+ has an undefined substring (in Z), then

every R-successor of x also has an undefined substring.

As in Assumption 23, Condition (4) says thatR preserves non-well-definedness.

An immediate consequence of the seamlessness property (described above)

is the following closure property for Z: If the subidentity α is in Z, then αpβ and
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βpα are also in Z for every subidentity β and every action symbol p.

Example 36 (Kleene algebra with tests). Let P be a finite set of actions symbols,

and Id be a disjoint finite set of atoms. Suppose thatR contains only the required

rules, and Z contains only the required undefined strings. For confluence of

R, we simply observe that all critical pairs are trivial. For the seamlessness

property we examine all the cases where an undefined string is part of a redex:

for α 6= β : ααβ →R αβ αβ β →R αβ

for β 6= γ : αpβ β γ →R αpβ γ β γ γpδ →R β γpδ

for α 6= β : ααβpγ →R αβpγ αβpγ γ →R αβpγ

for β 6= γ : αpβ β γqδ →R αpβ γqδ

for β 6= γ : ααpβ γpδ →R αpβ γpδ αpβ γpδ δ →R αpβ γpδ

The underlined parts in the reductions above are the undefined substrings. The

cases for αpβ γ are analogous to the ones for αβpγ. Generally, no application

of a rule of R can eliminate a part . . . αβ . . . with α 6= β. So, the quadruple

(P, Id , R, Z) satisfies Assumption 35.

Definition 37 (Typed Coalesced Product). Let (P, Id , R, Z) satisfy Assump-

tion 35. Let IR ⊆ Σ+ be theR-irreducible strings of Σ+ and JR = IR\(Σ∗ ·Z ·Σ∗).

That is,

JR = {u ∈ Σ+ | u is R-irreducible and has no substring in Z}.

Define the (untyped) coalesced product � as in Definition 26. For x in JR, we write

x : α → β to mean that x starts with α and ends with β. The expression α → β

is said to be the type of x. Observe that α : α → α for every subidentity α and

αpβ : α → β for the composite letters of Σ. We introduce a family of undefined

symbols ⊥αβ : α → β for all subidentities α, β. We define the typed coalesced
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product � as:

x � y =


nfR(xy), if nfR(xy) has no substring in Z

⊥αγ, if nfR(xy) has a substring in Z

for x : α→ β and y : β → γ in JR. Extend the operation to account for undefined

operands:

x : α→ β in JR
x �⊥βγ = ⊥αγ

y : β → γ in JR
⊥αβ � y = ⊥αγ

⊥αβ �⊥βγ = ⊥αβ

Observe that � can also be seen as a family (�αβγ)α,β,γ∈Id of operations indexed

by types.

Observation 38 (Typed Partial Monoid). Let (P, Id , R, Z) satisfy Assumption 35.

Notice that this quadruple gives rise to a typed monoid (i.e., a small category):

− The objects (types) are the subidentities Id .

− The elements of type α→ β are Hom(α, β) = {x ∈ JR | x : α→ β} ∪ {⊥αβ}.

− The typed coalesced product � is the composition operation of the category:

x in Hom(α, β) y in Hom(β, γ) z in Hom(γ, δ)

(x � y) � z = x � (y � z)

The associativity of � relies on the confluence of R and the seamlessness

property.

− For every subidentity α, we have an identity element α ∈ Hom(α, α) of the

category:

x in Hom(α, β)
α � x = x

x in Hom(α, β)

x � β = x

For the first equation above, we examine the cases where x is equal to α

or of the form αpα′x′. Since R contains the rule αα → α, we have that

α � α = nfR(αα) = nfR(α) = α. Similarly, α � αpα′x′ = nfR(ααpα′x′) =

nfR(αpα′x′) = αpα′x′, since ααpα′ →R αpα
′.
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− Every hom-set Hom(α, β) contains a distinguished undefined element ⊥αβ :

α→ β.

x in Hom(α, β)

x �⊥βγ = ⊥αγ
x in Hom(β, γ)

⊥αβ � x = ⊥αγ

The above constants and operations constitute a typed partial monoid, i.e., a small

category with a distinguished undefined element for every homset.

Definition 39 (Language Interpretations). Let (P, Id , R, Z) satisfy Assump-

tion 35. Define [⊥]Σ = AnceR(Σ∗ · Z · Σ∗), and for a string u ∈ Σ+ we put:

[u]Σ =


AnceR(nfR(u)), if nfR(u) has no substring in Z

[⊥]Σ, if nfR(u) has a substring in Z

For a language L ⊆ Σ+ we define G⊥(L) ⊆ JR and C⊥(L) ⊆ S as follows:

G⊥(L) = {nfR(u) | u ∈ L} \ [⊥]Σ C⊥(L) = [⊥]Σ ∪
⋃
u∈L[u]Σ

Now, the interpretation G⊥ sends a regular expression over Σ to a subset of JR:

G⊥(a) = {nfR(a)} \ [⊥]Σ G⊥(e1 + e2) = G⊥(e1) ∪ G⊥(e2)

G⊥(0) = ∅ G⊥(e1; e2) = G⊥(e1) � G⊥(e2)

G⊥(1) = G⊥(Id) G⊥(e∗) =
⋃
n≥0G⊥(e)〈n〉

We define C⊥(e) = C⊥(R(e)) for an expression e with R(e) ⊆ Σ+. As in Defini-

tion 30, the interpretation G⊥ discards the undefined strings, but C⊥ adds them

all in.

Lemma 40. Let (P, Id , R, Z) satisfy Assumption 35. For L,L′ ⊆ Σ+ we have:

1. C⊥(L) = C⊥(G⊥(L)).

2. G⊥(L) = G⊥(C⊥(L)).

3. G⊥(L) = G⊥(L′) iff C⊥(L) = C⊥(L′).

4. C⊥(L) = AnceR(DescR(L)) ∪ [⊥]S .
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The above are analogous to Lemmas 14 and 31. For all expressions e, e′ we have:

5. G⊥(e) =
⋃
x∈R(e) G⊥(x).

6. G⊥(e) = G⊥(R(e)).

7. G⊥(e) = G⊥(e′) iff C⊥(e) = C⊥(e′).

8. C⊥(e) = AnceR(DescR(R(e))) ∪ [⊥]S .

For the parts (6), (7), and (8) we have the implicit assumption thatR(e),R(e′) ⊆

Σ+. For a string a1a2 · · · an, we write G⊥(a1a2 . . . an) to mean G⊥(a1; a2; · · · ; an).

Moreover, G⊥(ε) is notation for G⊥(1).

Proof. Similar to the proof of Lemma 31.

Definition 41 (Well-Behaved). Let (P, Id , R, Z) satisfy Assumption 35. We say

that it is well-behaved if it satisfies additionally the following properties:

1. R consists of rules of the form `→ r with |r| = 1 and |`| > 1.

2. Regularity: For every letter a in Σ, theR-ancestors AnceR(a) = {u | u→∗R a}

of a form a regular setR(ea) for some regular expressions ea.

3. Regular undefined set: There is a regular expression eZ withR(eZ) = Z.

4. Provability: For every letter a in Σ, the equation ea ≡ a is provable in KAR.

KAId denotes the extension of KAR with the equations eZ ≡ 0 and
∑

α∈Id α ≡ 1.

Example 42 (Kleene algebra with tests). Consider the quadruple (P, Id , R, Z) of

Example 36, which satisfies Assumption 35. We claim that it is, in fact, well-

behaved. The rules are of the right form. For the regularity condition, we have:

AnceR(α) = R(eα), where eα = α;α∗

AnceR(αpβ) = R(eαpβ), where eαpβ = α∗;αpβ; β∗
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The set Z of undefined strings is finite and hence regular. We put

eZ =
∑

α 6=β α; β +
∑

α 6=β,γ α; βpγ +
∑

α,β 6=γ αpβ; γ +
∑

α,β 6=γ,δ αpβ; γqδ.

For the provability condition, we first show KAR ` α ≡ α;α∗ as in Example 21.

Reasoning in KAR, we also have that

eαpβ ≡ α∗;αpβ; β∗ ≡ α∗;α;αpβ; β; β∗ ≡ α;αpβ; β ≡ αpβ.

We have used above equations of R, as well as the proved α ≡ eα and β ≡ eβ .

Theorem 43 (Completeness). Suppose that the quadruple (P, Id , R, Z) is well-

behaved. For all expressions e1 and e2 over Σ, G⊥(e1) = G⊥(e2) implies that

KAId ` e1 ≡ e2.

Proof. The proof is very similar to the one for plain partiality (see Theo-

rem 34). The only noteworthy difference is that we need to account for the

case where R(e1) or R(e2) contains the empty string, in order to be able to in-

voke Lemma 40. So, we need to transform an arbitrary regular expression e into

e′ with KAId ` e ≡ e′ and R(e′) ⊆ Σ+. We put e′ = (
∑

α∈Id α); e and we see

immediately that

KAId ` e ≡ 1; e ≡ (
∑

α∈Id α); e ≡ e′.

For an arbitrary language L ⊆ JR we have that Id �L = L, and therefore G⊥(e′) =

G⊥(e). By virtue of these observations, we can assume without loss of generality

thatR(e1) andR(e2) are contained in Σ+. The proof then proceeds exactly as in

Theorem 34.
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2.7 Applications

Theorem 43 gives us four completeness results as corollaries. First, we show

that KAT is complete for the standard interpretation of KAT terms as sets of

guarded strings. We then consider the case of KAT extended with simple Hoare

hypotheses b; p; c ≡ 0 (tests b, c, atomic action p), and with hypotheses c; p ≡ c.

We conclude with a completeness proof for NetKAT.

2.7.1 Kleene algebra with tests

We consider an alternative presentation of Kleene algebra with tests (KAT) in

reduced form. The primitive symbols are either actions p, q, r, . . . in P or atoms

α, β, γ, . . . in Id . Reduced KAT extends KA with the extra axioms:

α;α ≡ α α; β ≡ 0, if α 6= β
∑

α∈Id α ≡ 1

We want to give now another equivalent presentation of KAT where the primi-

tive symbols are from Σ = Id∪{αpβ | α, β ∈ Id}. We propose the axiomatization

for KAT over Σ:

α;α ≡ α α; β ≡ 0, if α 6= β αpβ; γqδ ≡ 0, if β 6= γ

α;αpβ ≡ αpβ α; βpγ ≡ 0, if α 6= β
∑

α∈Id α ≡ 1

αpβ; β ≡ αpβ αpβ; γ ≡ 0, if β 6= γ

Notice that this axiomatization is essentially the same as KAId for the quadruple

(P, Id , R, Z) which we considered in Examples 36 and 42.

Theorem 44. Let GKAT be the standard interpretation of Reduced KAT expres-

sions as sets of guarded strings [82]. Then, GKAT(e1) = GKAT(e2) implies e1 ≡ e2

in Reduced KAT.
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Proof. Let (P, Id , R, Z) be the rewrite system of Example 36, which is well-

behaved (proved in Example 42). Now, we define the substitutions θ and θ−1

as follows:

θ : p 7→
∑

α,β αpβ θ−1 : αpβ 7→ α; p; β

The substitution θ translates from the language of Reduced KAT to the language

of KAT over Σ, and θ−1 goes the other way. Let h be the function that transforms

a guarded string to the corresponding R-irreducible string of JR:

h : α0p1α1p2α2 · · ·αn−1pnαn 7→ α0α0p1α1α1p2α2 · · ·αn−1pnαn

For an expression e over Σ, we have G⊥(e) = h(GKAT(θ−1(e))). Reasoning in

Reduced KAT:

p ≡ 1; p; 1 ≡ (
∑

α∈Id α); p; (
∑

β∈At β) ≡
∑

α,β∈Id α; p; β.

It follows that we can show e ≡ θ−1(θ(e)) in Reduced KAT. By soundness

of Reduced KAT for the interpretation GKAT we also obtain that GKAT(e) =

GKAT(θ−1(θ(e))). So,

GKAT(e1) = GKAT(e2) =⇒ GKAT(θ−1(θ(e1))) = GKAT(θ−1(θ(e2)))

=⇒ h(GKAT(θ−1(θ(e1)))) = h(GKAT(θ−1(θ(e2))))

=⇒ G⊥(θ(e1)) = G⊥(θ(e2))

=⇒ KAT ` θ(e1) = θ(e2).

The last implication is by Theorem 43. Since the (translations of) all the axioms

of KAT over Σ are provable in Reduced KAT, we conclude that e1 ≡ e2 is also

provable.
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2.7.2 KAT with simple Hoare hypotheses

A simple Hoare assertion is an expression of the form {b}p{c}, where b, c are tests

and p is an atomic action. It can be encoded in KAT with any one of the follow-

ing equations

b; p;¬c ≡ 0 b; p ≡ b; p; c b; p ≤ p; c

The equation b; p;¬c ≡ 0 is equivalent to the conjunction of the equations

β; p; γ ≡ 0, where β, γ are atoms with β ≤ b and γ ≤ ¬c. So, without loss of

generality we restrict attention to assertions of the form β; p; γ ≡ 0, where β, γ

are atoms and p is an atomic action.

Let Zh be a finite collection of strings of the form γpδ, where γ, δ are atoms

and p is an action symbol, and H be the set of equations γ; p; δ ≡ 0 for every γpδ

in Zh. We write KAT+H for the extension of KAT with extra axioms H . We also

define the interpretation Gh by Gh(e) = GKAT(e)\W , whereW is the set of strings

containing some γpδ in Zh.

Theorem 45. The system KAT+H is complete for the interpretation Gh.

Proof. Consider the tuple (P, Id , R, Z) of Example 36, modified so that Z con-

tains additionally Zh. To verify that is satisfies Assumption 35 we need to

check seamlessness: for an undefined γpδ ∈ Zh we have that γ γpδ →R γpδ and

γpδ δ →R γpδ. In fact, the tuple is well-behaved as seen in Example 42 (the set Z

is still finite hence regular). Arguing as in the proof of Theorem 44, Theorem 43

gives us the desired completeness result.
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2.7.3 Redundant actions

We consider now equations of the form c; p ≡ c, where c is a test and p is an

atomic action. We claim that c; p ≡ c is equivalent to the conjunction of γ; p ≡ γ

for γ ≤ c. Suppose that c; p ≡ c and notice for γ ≤ c that γ; p ≡ γ; c; p ≡ γ; c ≡ γ.

For the converse, we assume that γ; p ≡ γ for every γ ≤ c and we show:

c; p ≡ (
∑

γ≤c γ); p ≡
∑

γ≤c γ; p ≡
∑

γ≤c γ ≡ c.

So, without loss of generality, we can restrict our attention to equations of the

form γ; p ≡ γ, where γ is an atom, and p is an atomic action.

Let X be a finite set of strings of the form γp, where γ is an atom and p is

an atomic action symbol, and Hr be the set of equations γ; p ≡ γ for every γp in

X . For an atomic action symbol p, define the set of atoms A(p) = {γ | γp ∈ X}.

Intuitively, A(p) is the set of atoms after which it is redundant to execute the

action p. Let Gr be the interpretation that differs from GKAT only for the base case

of atomic action symbols:

Gr(p) = A(p) ∪ {γpδ | γ /∈ A(p) and δ is atom}.

We write KAT+Hr for the extension of KAT with extra axioms Hr.

Theorem 46. The system KAT+Hr is complete for the interpretation Gr.

Proof. Fix an equation γ; p ≡ γ in Hr. We claim that it is equivalent to the con-

junction of the equations γ; p; γ ≡ γ and γ; p; δ ≡ 0 for δ 6= γ. For the left-to-right

direction, we assume γ; p ≡ γ and show γ; p; γ ≡ γ; γ ≡ γ and γ; p; δ ≡ γ; δ ≡ 0.

For the right-to-left direction:

γ; p ≡ γ; p; (γ +
∑

δ 6=γ δ) ≡ γ; p; γ +
∑

δ 6=γ γ; p; δ ≡ γ.

We define the tuple (P, Id , R, Z) so that R contains the base rules as well as
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γpγ → γ for every γp ∈ X , and Z contains the standard undefined strings as

well as γpδ for every γp ∈ X and δ 6= γ. First, we claim that the tuple satisfies

Assumption 35. We examine critical pairs:
γ γpγ

γpγ

γ γ

γ

γpγ γ

γ γ

γpγ

γ

It follows that R is confluent and terminating. For the seamlessness condition

we simply verify that γ γpδ →R γpδ and γpδ δ →R γpδ. It remains to show that

(P, Id , R, Z) is well-behaved. Fix an atom α and define PX(α) = {p | αp ∈ X}.

That is, PX(α) is the set of all atomic actions that are redundant when α holds.

The R-ancestors of α are

AnceR(α) = R(eα), where eα = (α +
∑
PX(α))+.

We have already seen that KAR ` α ≡ α+ (Example 21). So, reasoning in KAR:

eα ≡ (α +
∑
PX(α))+ ≡ (α + α)+ ≡ α+ ≡ α.

For a letter αpβ in Σ, its R-ancestors are AnceR(αpβ) = eαpβ , where

eαpβ = (α +
∑
PX(α))∗;αpβ; (β +

∑
PX(β))∗.

We also have that KAR ` eαpβ ≡ α∗;αpβ; β∗ ≡ αpβ. We have thus verified

well-behavedness and Theorem 43 says that KAId is complete for G⊥. But G⊥ is

essentially the same as Gr, and KAId is essentially the same as KAT+Hr.

2.7.4 Mutable tests

Let Id be a finite set of atoms, and suppose that the atomic actions are P = {pα |

α ∈ Id}. The intuition is that pα makes the atom α true. Consider axioms:

pα ≡ pα;α α; pα ≡ α pα; pβ ≡ pβ
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The first axiom says that α is true after executing pα. The second axiom asserts

that pα is redundant when α is true. Finally, the third axiom says that pβ over-

rides the effect of pα. These axioms together with KAT constitute a reduced

presentation of the system B!, which is studied in [44]. Let us call this reduced

system MutKAT. We define an interpretation Gm, which sends an expression to

a set of strings of the form αpββ.

Gm(α) = {αpαα} Gm(pβ) = {αpββ | α ∈ Id} αpββ � βpγγ = αpγγ

The coalesced product � is undefined for operands αpββ and γpδδ with β 6= γ.

A string αpββ is essentially a pair (α, β) of atoms.

Theorem 47. The system MutKAT is complete for the interpretation Gm.

Proof. First, we observe that MutKAT can be given equivalently by extending

KAT with

α; pα; a ≡ α α; pβ; γ ≡ 0, for β 6= γ (α; pβ; β); (β; pγ; γ) ≡ α; pγ; γ

We define (P, Id , R, Z) with additional rules αpαα → α and αpββ βpγγ → αpγγ,

and Z with additional undefined strings αpβγ where β 6= γ. We examine critical

pairs:

ααpαα

αpαα

αα

α

ααpββ βpγγ

αpββ βpγγ

ααpγγ

αpγγ

αpαααpββ

ααpββ αpββ

αpααα

αpαα

αα

α

αpββ βpγγ γ

αpββ βpγγ

αpγγ γ

αpγγ

αpββ βpββ

αpββ β αpββ

αpββ βpγγ γpδδ

αpγγ γpδδ

αpββ βpδδ

αpδδ

So, R is confluent and terminating. For seamlessness, we check the nontrivial
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cases:

for α 6= β : αpααβ →R αβ

for α 6= β : αβpββ →R αβ

for α 6= β : αpααβpγγ →R αβpγγ

for β 6= γ : αpββ γpγγ →R αpββ γ

for α 6= β : αβpγγ γpδδ →R αβpδδ

for γ 6= δ : αpββ βpγγ δ →R αpγγ δ

for β 6= γ : αpββ γpδδ δpζζ →R αpββ γpζζ

for γ 6= δ : αpββ βpγγ δpζζ →R αpγγ δpζζ

We have underlined above the undefined substrings. First, we consider the R-

ancestors of the letter αpββ, where α 6= β. The claim is that:

AnceR(αpββ) = R(eαpββ), where

eαpββ = row(α); (M + I)∗;M ; (M + I)∗; col(β).

The expression row(α) above is a matrix of type 1× Id (row vector) with 1 at the

α-indexed location and 0 elsewhere. Similarly, the expression col(β) is a matrix

of type Id × 1 (column vector) with 1 at the β-indexed location and 0 elsewhere.

The square matrices M and I are both of type Id × Id . We define M and I as:

M(γ, δ) = γpδδ I(γ, γ) = γ I(γ, δ) = 0, for γ 6= δ

Informally, the matrix M describes transitions from one atom to another, and

I describes the ε-transitions. The intuition for the definition of the expression

eαpββ is that it represents all paths from α to β with at least one “strict step” of

the form γpδδ. We define the 1× Id matrix N by N(γ) = αpγγ and we reason as

follows in KAR:

− Claim: M + I ≡ M . Notice that (M + I)(γ, γ) ≡ γpγγ + γ ≡ M(γ, γ) and for

γ 6= δ we have that (M + I)(γ, δ) ≡ γpδδ + 0 ≡M(γ, γ).

− Claim: row(α);M ≡ N . It holds that (row(α);M)(γ) ≡ M(α, γ) ≡ αpγγ ≡

N(γ).

− Claim: row(α);M∗ ≡ row(α) + N . The inequality row(α) + N ≤ row(α);M∗
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follows easily from the previous claim and KA. It also holds that

row(α);M∗ ≤ row(α) +N ⇐= (row(α) +N);M ≤ row(α) +N

⇐= row(α);M +N ;M ≡ row(α) +N

⇐= N +N ≤ row(α) +N,

which is is provable.

− Claim: N ;M ≡ N . This holds because (N ;M)(γ) ≡
∑

δN(δ);M(δ, γ) ≡∑
δ αpδδ; δpγγ, which is provably equal to αpγγ ≡ N(γ).

Using the claims we have just proved, we continue to reason in KAR:

row(α); (M + I)∗;M ; (M + I)∗; col(β) = row(α);M∗;M ;M∗; col(β)

≡ row(α);M∗;M ; col(β)

≡ (row(α) +N);M ; col(β)

≡ row(α);M ; col(β) +N ;M ; col(β)

≡ N ; col(β) +N ; col(β),

which is provably equal to N(β) ≡ αpββ. Now, the R-ancestors of an atom α are

AnceR(α) = R(eα), where eα = α+ + eαpαα

It also holds that KAR ` eα ≡ α++eαpαα ≡ α+αpαα ≡ α. Finally, theR-ancestors

of a letter αpβγ with β 6= γ are given as follows:

AnceR(αpβγ) = R(eαpβγ), where eαpβγ = (1 + eα);αpβγ; (1 + eγ).

So, (P, Id , R, Z) is well-behaved and Theorem 43 says that KAId is complete for

G⊥. Notice that G⊥ is essentially Gm and KAId is equivalent to MutKAT.
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2.7.5 NetKAT

The case of NetKAT [6] is an extension of MutKAT, which was studied previ-

ously in §2.7.4. We have a set Id of atoms, and the atomic actions are now

P = {dup} ∪ {pα | α ∈ Id}.

So, the language of NetKAT extends the language of MutKAT with the addi-

tional atomic action dup that satisfies the axiom α; dup = dup;α. This axiom

asserts that the action dup preserves the atom that currently holds true. Let Gn

be the language interpretation for NetKAT that is defined in [6].

Theorem 48. The system NetKAT is complete for the interpretation Gn.

Proof. NetKAT can be presented equivalently by extending KAT as follows:

α; pα; a ≡ α α; pβ; γ ≡ 0, for β 6= γ

(α; pβ; β); (β; pγ; γ) ≡ α; pγ; γ α; dup; β ≡ 0, for α 6= β

Define the rewrite system (P, Id , R, Z) as in the case of MutKAT (see proof of

Theorem 47) with the only difference being that Z here contains additionally

the strings αdupβ for atoms α 6= β. In order the establish well-behavedness, the

only extra obligations concern the R-ancestors of αdupβ. Indeed, we have

AnceR(αdupβ) = R(eαdupβ), where eαdupβ = (α + αpαα)∗;αdupβ; (β + βpββ)∗.

Similarly to the proof of Theorem 47, it holds that KAR ` eαdupβ = αdupβ. We

can now invoke Theorem 43, which completes the proof.
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2.7.6 Test commutes with action

We consider the case of KAT with extra equations of the form p; b ≡ b; p, where

b is a test and p is an atomic action. We claim that the equation p; b ≡ b; p is

equivalent to the conjunction of the following equations:

β; p; γ ≡ 0 (for β ≤ b, and γ ≤ ¬b)

γ; p; β ≡ 0 (for γ ≤ ¬b, and β ≤ b)

For one direction of the claim, we observe that:

p; b ≡
∑

γ∈At , β≤b γ; p; β ≡
(∑

γ≤b, β≤b γ; p; β
)

+
∑

γ≤¬b, β≤b γ; p; β ≡
∑

γ,β≤b γ; p; β

b; p ≡
∑

β≤b, γ∈At β; p; γ ≡
(∑

β≤b, γ≤b β; p; γ
)

+
∑

β≤b, γ≤¬b β; p; γ ≡
∑

β,γ≤b β; p; γ

It follows that p; b ≡ b; p. For the other direction of the claim, we have:

for β ≤ b and γ ≤ ¬b : β; p; γ ≤ b; p; γ ≡ p; b; γ ≡ 0 =⇒ β; p; γ ≡ 0

for γ ≤ ¬b and β ≤ b : γ; p; β ≤ γ; p; b ≡ γ; b; p ≡ 0 =⇒ γ; p; β ≡ 0

So, without loss of generality we can consider equations of the form β; p; γ ≡

0, for atoms β, γ and atomic action p. This is exactly like the case of Hoare

hypotheses, and so we obtain a completeness theorem as in §2.7.2.

2.8 Conclusion

We have identified sufficient conditions for the construction of free language

models for systems of Kleene algebra with additional equations. The construc-

tion provides a uniform approach to deductive completeness and coalgebraic

decision procedures (although we do not pursue this connection here). The cri-

teria are given in terms of inverse context-free rewrite systems [23]. They imply
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the existence of free language models in a wide range of previously studied in-

stances, including KAT [72] and NetKAT [6], as well as some new ones. We

have also given a negative result that establishes a limit to the applicability of

the technique.

For the future, we would like to investigate the possibility of develop-

ing a uniform approach to coalgebraic bisimulation-based decision procedures

[6, 39, 44, 114, 22]. Such decision procedures typically involve some variant of

Brzozowski derivatives and are highly dependent on the existence of language

models.
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CHAPTER 3

KAT WITH EXTRA MUTABLE TESTS

3.1 Introduction

Kleene algebra with tests (KAT) is a propositional equational system that com-

bines Kleene algebra (KA) with Boolean algebra. It has been shown to be an

effective tool for many low-level program analysis and verification tasks involv-

ing communication protocols, safety analysis, source-to-source program trans-

formation, concurrency control, and compiler optimization [7, 14, 27, 28, 29, 72,

81]. A notable recent success is its adoption as a basis for NetKAT, a foundation

for software-defined networks (SDN) [6].

One advantage of KAT is that it allows a clean separation of the theory of the

domain of computation from the program restructuring operations. The former

typically involves first-order reasoning, whereas the latter is typically proposi-

tional. It is often advantageous to separate the two, because the theory of the

domain of computation may be highly undecidable. With KAT, one typically

isolates the needed properties of the domain as premises in a Horn formula

s1 = t1 ∧ · · · ∧ sn = tn → s = t,

where the conclusion s = t expresses a more complicated equivalence between

(say) an unoptimized or unannotated version of a program and its optimized or

annotated version. The premises are verified once and for all using the proper-

ties of the domain, and the conclusion is then verified propositionally in KAT

under those assumptions.

Certain premises that arise frequently in practice can be incorporated as part
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of the theory using a technique known as elimination of hypotheses, in which

Horn formulas with premises of a certain form can be reduced to the equa-

tional theory without loss of efficiency [27, 82, 45]. However, there are a few

useful ones that cannot. In particular, it is known that there are certain program

transformations that cannot be effected in pure KAT, but require extra struc-

ture. Two paradigmatic examples are the Böhm–Jacopini theorem [21] (see also

[10, 98, 103, 112, 125]) and the folklore result that all while programs can be

transformed to a program with a single while loop [46, 96].

The Böhm–Jacopini theorem states that every deterministic flowchart can be

written as a while program. The construction is normally done at the first-order

level and introduces auxiliary variables to remember values across computa-

tions. It has been shown that the construction is not possible without some kind

of auxiliary structure of this type [10, 60, 61, 85].

Akin to the Böhm–Jacopini theorem, and often erroneously conflated with

it, is the folklore theorem that every while program can be written with a sin-

gle while loop. Like the proof of the Böhm–Jacopini theorem, the proof of [96]

(as reported in [46]) is normally done at the first-order level and uses auxiliary

variables. It was a commonly held belief that this result had no purely proposi-

tional proof [46], but a partial refutation of this view was given in [72] using a

construction that foreshadows the construction of this chapter.

One can carry out these constructions in an uninterpreted first-order ver-

sion of KAT called schematic KAT (SKAT) [7, 78], but as SKAT is undecidable in

general [76], one would prefer a less radical extension.

We investigate here the minimal amount of structure that suffices to perform
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these transformations and show how to incorporate it in KAT without sacrific-

ing deductive completeness or decidability. Our main results are:

• We show how to extend KAT with a set of independent mutable tests. The

construction is done axiomatically with generators and additional equa-

tional axioms. We formulate the construction as a general commutative

coproduct construction that satisfies a certain universality property. The

generators are abstract setters of the form t! and t̄! and testers t? and t̄? for

a test symbol t. We can think of these intuitively as operations that set and

test the value of a Boolean variable, although we do not introduce any

explicit notion of storage or variable assignment.

• We prove a representation theorem (Theorem 58) for the commutative co-

product of an arbitrary KAT K and a KAT of binary relations on a finite

set, namely that it is isomorphic to a certain matrix algebra over K.

• As a corollary to the representation theorem, we show that the extension is

conservative; that is, an arbitrary KAT K can be augmented with mutable

tests without affecting the theory of K. This is captured formally by a

general property of the commutative coproduct, namely injectivity. It is

not known whether the coproduct of KATs is injective in general, but we

show that it is injective if at least one of the two cofactors is a finite KAT,

which is the case in our application.

• We show that the free mutable test algebra on generators ti, 1 ≤ i ≤ n, is

isomorphic to the KAT of all binary relations on a set of 2n states.

• We show that the equational theory of an arbitrary KAT K augmented

with mutable tests is axiomatically reducible to the theory of K. In partic-

ular, the free KAT, augmented with mutable tests, is completely axioma-
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tized by the KAT axioms plus the axioms for mutable tests.

• We demonstrate that the folklore result about while programs can be car-

ried out in KAT with mutable tests.

Balbiani et al. [13] present a related system DL-PA (which stands for Dy-

namic Logic of Propositional Assignments), a variant of propositional dynamic

logic (PDL) with mutable tests only. Their system corresponds most closely to

our free mutable test algebra. However, the semantics of DL-PA is restricted to

relational models.

Outline This chapter is organized as follows. In §3.2 we introduce the theory

of mutable tests and prove that the free mutable test algebra on n generators is

isomorphic to the KAT of all binary relations on a set of size 2n. In §3.3 we in-

troduce the commutative coproduct construction and prove our representation

theorem for the commutative coproduct of an arbitrary KAT K and a finite rela-

tional KAT. In §3.4 we present our main completeness results, and we apply the

theory to give an axiomatic treatment of a significant application involving pro-

gram transformations, namely the folk theorem on while programs mentioned

above. In §3.5 we present conclusions and open problems.

3.2 Mutable Tests

Let Tn = {t1, t2, . . . , tn} be a set of primitive symbols, which should be thought

of as representing distinct Boolean variables. We write Σn = {t!, t̄! | t ∈ Tn} for

the set of action symbols that informally set and reset the Boolean variables. So,

we think of t! as saying “make t true” and of t̄! as saying “make t false”. We also
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have corresponding tests Bn = {t?, t̄? | t ∈ Tn}, where t? performs the test “is t

true?” and similarly t̄? performs the test “is t false?”. In Figure 3.1 we introduce

a finite collection Mutn of equational axioms which capture the essential prop-

erties of mutable tests over Tn. Let us give some intuitive explanation for some

of the Mutn axioms:

• The equation t!; t? = t! says that the action t! makes a subsequent test t?

true.

• The equation t?; t! = t? says that if t? is already true, then the action t! is

redundant.

• The equation t!; t̄! = t̄! says that setting a variable with t̄! overrides a pre-

vious assignment t! to the same variable.

• The equations s!; t! = t!; s! and s!; t? = t?; s! say that actions and tests on

different values are independent.

The theory MutKAT=
n refers to the equational consequences of the above axioms

along with the axioms of KAT on terms over Σn and Bn. The equations

t!; t! = t!; t?; t! = t!; t? = t! t!; t̄? = t!; t?; t̄? = t!; 0 = 0

follow from the axioms. So, t!; t! = t! and t!; t̄? = 0 are in MutKAT=
n .

Example 49 (Negation). The equations ¬t? = t̄? and ¬t̄? = t? are in MutKAT=
n .

Proof. Using both KAT axioms and equations from Mutn we get the sequences

of equations:

¬t? = ¬t?; 1 = ¬t?; (t? + t̄?) = ¬t?; t? + ¬t?; t̄? = 0 + ¬t?; t̄? = ¬t?; t̄?

t̄? = t̄?; 1 = t̄?; (t? + ¬t?) = t̄?; t? + t̄?;¬t? = 0 + t̄?;¬t? = t̄?;¬t?
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Positive & negative literals t?; t̄? = 0 t? + t̄? = 1

Redundant test t!; t? = t! t̄!; t̄? = t̄!

Redundant action t?; t! = t? t̄?; t̄! = t̄?

Variable overwriting t!; t̄! = t̄! t̄!; t! = t!

Write-write commutation (s 6= t) s!; t! = t!; s! s!; t̄! = t̄!; s!

s̄!; t! = t!; s̄! s̄!; t̄! = t̄!; s̄!

Write-read commutation (s 6= t) s!; t? = t?; s! s!; t̄? = t̄?; s!

s̄!; t? = t?; s̄! s̄!; t̄? = t̄?; s̄!

Figure 3.1: The essential equational properties of mutable tests.

Since tests commute, we get that ¬t? = t̄?. It follows that ¬¬t? = ¬t̄? and hence

t? = ¬t̄?.

A Tn-assignment is a map ρ : Tn → 2, where 2 = {0, 1}. So, ρ gives us for

every variable t whether it is true (ρ(t) = 1) or false (ρ(t) = 0). Now, for such

a function ρ : Tn → 2 we write test(ρ) for the test that checks whether every

variable has the value prescribed by ρ. Similarly, we write set(ρ) for the action

that sets each variable so that its value is equal to the one given by ρ. More

formally, we define

test(ρ) , `1?; `2?; · · · ; `n? set(ρ) , `1!; `2!; · · · ; `n!

where `i = t if ρ(ti) = 1 and `i = t̄ if ρ(ti) = 0. A term of the form test(ρ) is

called a complete test, and similarly a term of the form set(ρ) is called a complete

assignment.

Lemma 50 (Reduced Axioms). Let ρ and σ be Tn-assignments. The following

are consequences of Mutn and KAT:∑
ρ test(ρ) = 1 set(ρ); test(ρ) = set(ρ)

test(ρ); test(ρ) = test(ρ) test(ρ); set(ρ) = test(ρ)

test(ρ); test(σ) = 0 when ρ 6= σ set(ρ); set(σ) = set(σ)
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Proof. All the above properties follow easily from the axioms for mutable tests

given in Figure 3.1. For example, let us derive the first equation:

1 = 1; 1; · · · ; 1 [KA axioms]

= (t1? + t̄1?); (t2? + t̄2?); · · · ; (tn? + t̄n?) [axiom t? + t̄? = 1]

= t1?; t2?; · · · ; tn? + · · ·+ t̄1?; t̄2?; · · · ; t̄n? [distributivity]

=
∑

ρ test(ρ) [same term]

where ρ in the sum above ranges over all Tn-assignments. We omit the proofs

for the rest.

Now, we claim that every primitive test and action can be written equiva-

lently using complete tests and complete assignments as base terms:

t? =
∑

ρ(t)=1 test(ρ); set(ρ) t! =
∑

ρ test(ρ); set(ρ[t 7→ 1]) (3.1)

t̄? =
∑

ρ(t)=0 test(ρ); set(ρ) t̄! =
∑

ρ test(ρ); set(ρ[t 7→ 0]) (3.2)

The above equations can be established easily using the properties of Lemma 50.

For example,

t! =
(∑

ρ test(ρ)
)

; t! =
∑

ρ test(ρ); t! =
∑

ρ test(ρ); set(ρ); t!

=
∑

ρ test(ρ); set(ρ[t 7→ 1]).

Deriving the rest of the equations is equally straightforward, and we thus omit

the proofs.

We have seen so far that the complete tests and assignments can be written

using the primitive tests and assignments, and vice versa. Lemma 50 says that

the given set of reduced axioms (in terms of complete tests and assignments) fol-

lows from the original axioms. It is also the case that the original axioms follow

from the reduced axioms. So, the original axiomatization Mut and the reduced

axiomatization of Lemma 50 are equivalent given the axioms of KAT.

63



3.2.1 Free KAT Generated by Mutable Tests

Let Kn be the free KAT generated by the actions Σn and the tests Bn modulo the

equational consequences of Mutn and KAT. This algebra arises from a standard

construction, which we outline here for the sake of completeness. First, we

define the sets of test-terms TrmB(Tn) and (general) terms Trm(Tn), for which

the containment TrmB(Tn) ⊆ Trm(Tn) holds.

0, 1 ∈ TrmB(Tn)
t ∈ Tn

t?, t̄? ∈ TrmB(Tn)

p, q ∈ TrmB(Tn)

p+ q, p; q, ¬p ∈ TrmB(Tn)

p ∈ TrmB(Tn)

p ∈ Trm(Tn)

t ∈ Tn
t!, t̄! ∈ Trm(Tn)

f, g ∈ Trm(Tn)

f + g, f ; g, f∗ ∈ Trm(Tn)

Recall that we defined MutKAT=
n to be the smallest set of equations that contains

the Mutn axioms of Figure 3.1 and is closed under the axioms and rules of KAT

and Horn-equational logic. It follows that the equations of MutKAT=
n describe a

KAT-congruence on Trm(Tn). We denote by [f ] the congruence class of a term f

in Trm(Tn). Now, we define the carriers Bn ⊆ Kn as follows:

Kn , Trm(Tn)/MutKAT=
n = {[f ] | f ∈ Trm(Tn)}

Bn , TrmB(Tn)/MutKAT=
n = {[p] | p ∈ TrmB(Tn)}

Since MutKAT=
n describes a KAT-congruence, we can define the KAT operations

on the congruence classes:

0n , [0] [f ] + [g] , [f + g] [f ]∗ , [f∗]

1n , [1] [f ]; [g] , [f ; g] ¬[p] , [¬p]

The algebra (Kn, Bn,+, ; ,
∗ , 0n, 1n,¬) is called the free KAT over mutable tests Tn.

Lemma 51 (Canonical Forms). For every term f in Trm(Tn) there is a finite col-

lection (ρi, σi)i of pairs of Tn-assignments such that the equation

f =
∑

i test(ρi); set(σi)

belongs to the equational theory MutKAT=
n .
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Proof. By Boolean reasoning we know that every test p can be rewritten equiv-

alently so that negation only appears in front of the primitive tests t? and t̄?.

Since ¬t? = t̄? and ¬t̄? = t? are provable (see Example 49), we can assume with-

out loss of generality that negation does not appear at all in the terms, except in

the form of an overbar on primitive symbols

Now, the proof proceeds by induction on the structure of terms. The base

cases t?, t̄?, t! and t̄! have already been handled in Equations (3.1) and (3.2).

Moreover, 0 is the empty sum and

1 =
∑

ρ test(ρ) =
∑

ρ test(ρ); set(ρ)

is provable by Lemma 50. The step case for choice + is trivial. For the case of

composition ; we first observe (using equations of Lemma 50) that

test(ρ); set(σ); test(σ); set(τ) =

test(ρ); set(σ); set(τ) =

test(ρ); set(τ)

test(ρ); set(σ); test(τ); set(υ) =

test(ρ); set(σ); test(σ); test(τ); set(υ) =

test(ρ); set(σ); 0; set(υ) = 0 (when σ 6= τ )

are provable, hence using distributivity we are done. Finally, for the case of

iteration, we observe that every term of the form f∗ can be written equivalently

as a finite sum 1 + f + f 2 + · · · + fm for some m, since there are finitely many

Tn-assignments. By the previous cases, we are done.

Definition 52 (Relational KAT With Mutable Tests). Let S be a nonempty set.

We represent a binary relation on S as a function of type S → P(S), where P(S)

is the powerset of S. We use letters φ, ψ, χ, . . . to range over binary relations and

ρ, σ, τ, . . . to range over elements of S. We define for every σ ∈ S the test σ? and

the action σ! as follows:

σ?(ρ) , ∅ if ρ 6= σ σ?(σ) , {σ} σ!(ρ) , {σ}

The constants 0S and 1S are given by 0S(ρ) = ∅ and 1S(ρ) = {ρ}. The operations
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of composition ;, binary choice +, arbitrary choice
∑

, and iteration ∗ are defined

in the usual way:

(φ;ψ)(ρ) ,
⋃
σ∈φ(ρ)ψ(σ) (

∑
i φi)(ρ) ,

⋃
iφi(ρ)

φ+ ψ ,
∑
{φ, ψ} φ∗ ,

∑
n≥0 φ

n

where φn is the n-fold composite of φ, that is, φ0 = 1S and φn+1 = φn;φ. For a

relation φ ≤ 1S , define ¬φ ≤ 1S to be the unique relation satisfying φ+ ¬φ = 1S

and φ;¬φ = 0S . The set S → P(S) together with the above operations forms a

KAT of binary relations.

Consider now the particular case where S is equal to the set Tn → 2 of Tn-

assignments. We define for every t ∈ Tn the tests (t?)S and (t̄?)S as well as the

actions (t!)S and (t̄!)S as follows:

(t!)S(ρ) , {ρ[t 7→ 1]} (t̄!)S(ρ) , {ρ[t 7→ 0]}

(t?)S(ρ) ,


{ρ}, if ρ(t) = 1

∅, if ρ(t) = 0

(t̄?)S(ρ) ,


∅, if ρ(t) = 1

{ρ}, if ρ(t) = 0

For elements ρ and σ in S, notice that the relation ρ?;σ! : S → P(S) is the

smallest relation that contains the pair (ρ, σ). More formally, (ρ?;σ!)(ρ) = {σ}

and (ρ?;σ!)(ρ′) = ∅ when ρ′ 6= ρ. Moreover, every relation φ : S → P(S) can be

written as a sum φ =
∑

σ∈φ(ρ) ρ?;σ!.

Call KS the KAT described in the above definition. We remark that KS is

isomorphic to the algebra Mat(S, 2) of (S × S)-indexed matrices with Boolean

values. The composition operation in Mat(S, 2) is matrix multiplication, choice

+ is componentwise addition, and ∗ corresponds to reflexive transitive closure.

Theorem 53 (Representation). The free KAT Kn over the mutable tests Tn is

isomorphic to the KAT of all binary relations on a set of size 2n.
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Proof. We write S as abbreviation for the set Tn → 2 of Tn-assignments, and we

denote by KS the KAT of all binary relations on S (see Definition 52). Define

H : Trm(Tn)→ KS by:

H(0) = 0S H(1) = 1S H(f ; g) = H(f);H(g)

H(t?) = (t?)S H(t̄?) = (t̄?)S H(f + g) = H(f) +H(g)

H(t!) = (t!)S H(t̄!) = (t̄!)S H(f∗) = H(f)∗

We claim now that for every equation f = g in the theory MutKAT=
n we have

H(f) = H(g). This is shown by induction on the construction of the theory

MutKAT=
n , and it hinges on the fact that KS is a KAT and the distinguished el-

ements (t?)S , (t̄?)S , (t!)S and (t̄!)S of the algebra satisfy the equations Mutn of

Figure 3.1. For example, the equation t!; t? = t! is satisfied because

((t!)S; (t?)S)(ρ) = (t?)S(ρ[t 7→ 1]) = {ρ[t 7→ 1]} and (t!)S(ρ) = {ρ[t 7→ 1]}

for every Tn-assignment ρ. Since H agrees on terms f, g for which f = g is

in MutKAT=
n , we can define H1 : Trm(Tn)/MutKAT=

n → KS on the equivalence

classes by H1([f ]) = H(f). In fact, H1 is a KAT homomorphism from Kn to KS

that also preserves the distinguished constants for the symbols t?, t̄?, t!, and t̄!.

For example, commutation with + is shown by

H1([f ] + [g]) = H1([f + g]) = H(f + g) = H(f) +H(g) = H1([f ]) +H1([g]),

and the rest of the operations are handled similarly.

Now, we wish to show that the homomorphism H1 : Kn → KS is surjective.

For this, notice that every relation φ : S → P(S) can be written as a finite sum

φ =
∑

σ∈φ(ρ) ρ?;σ!

=
∑

σ∈φ(ρ) H(test(ρ));H(set(σ))

= H
(∑

σ∈φ(ρ) test(ρ); set(σ)
)
,
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because for the relations ρ? and σ! (Definition 52) we have ρ? = H(test(ρ)) and

σ! = H(set(σ)).

Finally, the map H1 : Kn → KS is injective by virtue of Lemma 51, which

gives us provably equivalent canonical forms. Let f and g be arbitrary terms.

We also assume that H1([f ]) and H1([g]) are equal. Lemma 51 says that there

exist finite collections (ρi, σi)i and (τj, υj)j of pairs of Tn-assignments such that

the equations

f =
∑

i test(ρi); set(σi) and g =
∑

j test(τj); set(υj)

belong to the theory MutKAT=
n . From the hypothesisH1([f ]) = H1([g]) we obtain

H(f) = H(g) =⇒
∑

iH(test(ρi); set(σi)) =
∑

j H(test(τj); set(υj))

=⇒
∑

i ρi?;σi! =
∑

j τj?; υj!,

which implies that the sets {(ρi, σi) | i} and {(τj, υj) | j} are equal. So,

with simple reasoning in KAT, we see that the terms
∑

i test(ρi); set(σi) and∑
j test(τj); set(υj) are provably equivalent. It follows that the equation f = g is

in MutKAT=
n , and therefore [f ] = [g].

Corollary 54 (Completeness). Let KS be the KAT of all binary relation on the

finite set S of Tn-assignments. The system KAT+Mutn is complete for the equa-

tional theory of KS . In other words, if the terms f and g of Trm(Tn) denote

the same relation in KS (under the canonical interpretation), then the equation

f = g is provable.

Proof. The canonical interpretation H : Trm(Tn) → KS sends t? to (t?)S , and so

on. For terms f and g, if H(f) = H(g) then we have by the isomorphism KS
∼=

Kn (Theorem 53) that [f ] = [g]. So, the equation f = g belongs to MutKAT=
n , and

is therefore provable in KAT+Mutn.
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3.3 The Commutative Coproduct of KATs

In this section we will present our central commutative coproduct construction.

Let (K,B,+, ; ,∗ , 0K , 1K ,¬) be an arbitrary KAT. For every element x ∈ K we

introduce a constant symbol cx. We define the set of test-terms Trm(B) and (gen-

eral) terms Trm(K) as follows:

0, 1 ∈ Trm(B) b ∈ B
cb ∈ Trm(B)

p, q ∈ Trm(B)

p+ q, p; q, ¬p ∈ Trm(B)

x ∈ K
cx ∈ Trm(K)

f, g ∈ Trm(K)

f + g, f ; g, f∗ ∈ Trm(K)

Of course, the containment Trm(B) ⊆ Trm(K) holds, because we have that B ⊆

K. The function H : Trm(K) → K is the unique homomorphism from Trm(K)

to K given by H : cx 7→ x for every element x ∈ K. The diagram of K, denoted

∆K , is the set of equations between terms in Trm(K) that hold in K. That is,

∆K , {f = g | f, g ∈ Trm(K) and H(f) = H(g) in K}.

In other words, ∆K is the kernel of the homomorphism H . It follows from gen-

eral considerations of universal algebra that Trm(K)/∆K
∼= K.

Definition 55 (Commutative Coproduct of KATs). LetK andK ′ be KATs, which

without loss of generality have disjoint carriers. Suppose that their test carriers

are B and B′ respectively. We write Trm(K,K ′) for the set of mixed terms over

the union of the carriers of K and K ′, and similarly Trm(B,B′) is the set of test-

terms over B ∪B′.

0, 1 ∈ Trm(B,B′) b ∈ B ∪B′
cb ∈ Trm(B,B′)

p, q ∈ Trm(B,B′)

p+ q, p; q, ¬p ∈ Trm(B,B′)

x ∈ K ∪K ′
cx ∈ Trm(K,K ′)

f, g ∈ Trm(K,K ′)

f + g, f ; g, f∗ ∈ Trm(K,K ′)
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The above definitions imply that the following containments hold:

Trm(B,B′) ⊆ Trm(K,K ′) Trm(B),Trm(B′) ⊆ Trm(B,B′)

Trm(K),Trm(K ′) ⊆ Trm(K,K ′)

The sets ∆K and ∆K′ are the diagrams of K and K ′ respectively. We also define

D , {cx; cy = cy; cx | x ∈ K and y ∈ K ′}.

We call D the set of commutativity equations, which say informally that the ele-

ments of K and K ′ commute with respect to composition. Now, let EK,K′ be

the smallest set of equations between terms of Trm(K,K ′) that contains the dia-

grams ∆K and ∆K′ and the commutativity equations D, and that is additionally

closed under the axioms and rules of KAT and Horn-equational logic. Now, we

define the commutative coproduct K �K ′ of K and K ′ to be the quotient algebra

K �K ′ , Trm(K,K ′)/EK,K′ .

Of course,K�K ′ is a KAT, since the setEK,K′ of equations contains all instances

of equational KAT axioms and is closed under all instances of KAT implications.

We define the maps left coprojection ι1 : K → K �K ′ and right coprojection ι2 :

K ′ → K �K ′ by ι1(x) = [cx] and ι2(u) = [cu], where [cx] is the congruence class

of cx in K�K ′. It is easily verified that both ι1 and ι2 are KAT homomorphisms.

For example, we have

ι1(x; y) = [cx;y] = [cx; cy] = [cx]; [cy] = ι1(x); ι1(y),

because the equation cx; cy = cx;y is in the diagram ∆K ⊆ EK,K′ . Moreover,

ι1(x); ι2(y) = [cx]; [cy] = [cx; cy] = [cy; cx] = [cy]; [cx] = ι2(y); ι1(x)

for x ∈ K and y ∈ K ′, because the commutativity equation cx; cy = cy; cx is in D.

Lemma 56 (Canonical Forms). Let K be a KAT and F be a finite KAT. Every
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element of K � F can be expressed as a finite sum∑
u∈F ι1(x(u)); ι2(u)

for some function x : F → K.

Proof. Every element of K � F is of the form [f ] for some term f ∈ Trm(K,F ).

The proof is by induction on the structure of the term f . The base cases cx for

x ∈ K and cu for u ∈ F are trivial. The case of + is easy, and for ; we use

commutativity (equations in D) and distributivity. The case of negation does

not need to be handled separately, because ¬ can be pushed down to the leaves

of the terms and ¬[cb] = [c¬b] in K � F for a test b.

Finally, we handle the case of iteration [f∗] = [f ]∗, which is the most inter-

esting case. The induction hypothesis gives us that the element [f ] ∈ K � F is

of the form

[f ] =
∑

u∈F ι1(x(u)); ι2(u)

for some x : F → K. Consider the finite alphabet ΣF = {au | u ∈ F}, and define

the functions:

g : ΣF → K � F h : ΣF → K ι1 ◦ h : ΣF → K � F

au 7→ ι1(x(u)); ι2(u) au 7→ x(u) au 7→ ι1(x(u))

Let Reg(ΣF ) be the algebra of regular sets over ΣF , which is the free KA on gen-

erators ΣF [69, 70]. Since both K � F and K are Kleene algebras and ι1 is a KA-

homomorphism, the functions g, h, and ι1 ◦ h extend to KA-homomorphisms:

g : Reg(ΣF )→ K � F h : Reg(ΣF )→ K ι1 ◦ h : Reg(ΣF )→ K � F

We know that a KA-homomorphism lifts to a KA-homomorphism between the
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matrix algebras:

ḡ : Mat(F,Reg(ΣF ))→ Mat(F,K � F ) ḡ(M)st , g(Mst)

h̄ : Mat(F,Reg(ΣF ))→ Mat(F,K) h̄(M)st , h(Mst)

ῑ1 : Mat(F,K)→ Mat(F,K � F ) ῑ1(M)st , ι1(Mst)

where Mat(F,K) is the KA of (F × F )-matrices over K. Define the matrix A by

Ast ,
∑
{au | u ∈ F and s;u = t in F} for s, t in F .

We consider A to be an element of Mat(F,Reg(ΣF )) (we have slightly abused

notation above). We can also think of A as representing an automaton with

states F and having a au-labeled transition s → t for every u with s;u = t. It

follows that:

ḡ(A)st = g(Ast) = g(
∑

s;u=t au) =
∑

s;u=t g(au) =
∑

s;u=t ι1(x(u)); ι2(u)

h̄(A)st = h(Ast) = h(
∑

s;u=t au) =
∑

s;u=t h(au) =
∑

s;u=t x(u)

(ῑ1 ◦ h̄)(A)st = ῑ1(h̄(A))st = ι1(h̄(A)st) = ι1(h(Ast)) =
∑

s;u=t ι1(x(u))

We also define the matrix M in Mat(F,K � F ) as follows:

Mss , ι2(u) Mst , 0K�F for s 6= t

We claim that M · ḡ(A) = (ῑ1 ◦ h̄)(A) ·M . Indeed, for all s and t in F we have:

(M · ḡ(A))st =
∑

u∈F Msu; ḡ(A)ut [matrix multiplication]

= Mss; ḡ(A)st [definition of M ]

= ι2(s);
∑

s;u=t ι1(x(u)); ι2(u) [definition of M and ḡ(A)]

=
∑

s;u=t ι2(s); ι1(x(u)); ι2(u) [distributivity]

=
∑

s;u=t ι1(x(u)); ι2(s); ι2(u) [cs; cx(u) = cx(u); cs in D ⊆ EK,F ]

=
∑

s;u=t ι1(x(u)); ι2(t) [cs; cu = ct in ∆F ⊆ EK,F ]

((ῑ1 ◦ h̄)(A) ·M)st =
∑

u∈F (ῑ1 ◦ h̄)(A)su;Mut [matrix multiplication]

= (ῑ1 ◦ h̄)(A)st;Mtt [definition of M ]
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=
(∑

s;u=t ι1(x(u))
)

; ι2(t) [def. of (ῑ1 ◦ h̄)(A) and M ]

=
∑

s;u=t ι1(x(u)); ι2(t) [distributivity]

Since Mat(F,K � F ) is a KA, we have by the bisimulation rule (1.3) of Kleene

algebra the following implications:

M · ḡ(A) = (ῑ1 ◦ h̄)(A) ·M =⇒ [bismulation rule]

M · ḡ(A)∗ = (ῑ1 ◦ h̄)(A)∗ ·M =⇒ [homomorphisms]

M · ḡ(A∗) = (ῑ1 ◦ h̄)(A∗) ·M =⇒ [matrices]

(M · ḡ(A∗))st = ((ῑ1 ◦ h̄)(A∗) ·M)st for all s, t ∈ F =⇒ [definition of M ]

Mss; ḡ(A∗)st = (ῑ1 ◦ h̄)(A∗)st;Mtt for all s, t ∈ F =⇒ [definition of M ]

ι2(s); ḡ(A∗)st = (ῑ1 ◦ h̄)(A∗)st; ι2(t) for all s, t ∈ F .

We instantiate the above equation for s = 1F and get

ḡ(A∗)1t = (ῑ1 ◦ h̄)(A∗)1t; ι2(t).

Now, we have that

[f ]∗ = (
∑

u∈F ι1(x(u)); ι2(u))∗ [induction hypothesis]

= (
∑

u∈F g(au))
∗ [definition of g]

= g((
∑

u∈F au)
∗) [g homomorphism]

= g(
∑

t∈F (A∗)1t) [automaton A]

=
∑

t∈F g((A∗)1t) [g homomorphism]

=
∑

t∈F ḡ(A∗)1t [definition of ḡ]

=
∑

t∈F (ῑ1 ◦ h̄)(A∗)1t; ι2(t), [see claim above]

=
∑

t∈F ι1(h̄(A∗)1t); ι2(t). [ι1 on matrices]

Since the final sum is of the desired form∑
t∈F ι1(h̄(A∗)1t); ι2(t) =

∑
t∈F ι1(y(t)); ι2(t)
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where y : F → K is given by y(t) = h̄(A∗)1t, we are done.

In the following lemma, we specialize the setting of Lemma 56 by consider-

ing the coproduct with a finite KAT of all binary relations over a finite set.

Lemma 57 (Canonical Forms). Let K be a KAT and F be the KAT of all binary

relations over a finite set S (see Definition 52). Every element of K � F can be

expressed as a finite sum ∑
ρ,σ∈S ι1(z(ρ, σ)); ι2(ρ?;σ!)

for some function z : S × S → K.

Proof. From Lemma 56 we know that every element of K � F is of the form∑
φ∈F ι1(y(φ)); ι2(φ)

for some function y : F → K. For every relation φ ∈ F we define the map

xφ : S × S → {0F , 1F} by xφ(ρ, σ) = 1F iff ρ?;σ! ≤ φ. It is then easy to see that φ

can be written as a finite sum

φ =
∑

ρ,σ xφ(ρ, σ); ρ?;σ!.

Since the coprojections ι1 : K → K � F and ι2 : F → K � F are KAT homomor-

phisms, we have:∑
φ∈F ι1(y(φ)); ι2(φ) = [expand φ]∑
φ∈F ι1(y(φ)); ι2

(∑
ρ,σ xφ(ρ, σ); ρ?;σ!

)
= [ι2 homomorphism]∑

φ∈F ι1(y(φ));
∑

ρ,σ ι2(xφ(ρ, σ)); ι2(ρ?;σ!) = [distributivity]∑
φ∈F

∑
ρ,σ ι1(y(φ)); ι2(xφ(ρ, σ)); ι2(ρ?;σ!) = [rearrange sum]∑

ρ,σ

∑
φ∈F ι1(y(φ)); ι2(xφ(ρ, σ)); ι2(ρ?;σ!) = [distributivity]∑

ρ,σ

(∑
φ∈F ι1(y(φ)); ι2(xφ(ρ, σ))

)
; ι2(ρ?;σ!) = [ι1 homomorphism]∑

ρ,σ ι1(z(ρ, σ)); ι2(ρ?;σ!),
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where z(ρ, σ) =
∑
{y(φ) | xφ(ρ, σ) = 1F} =

∑
σ∈φ(ρ) y(φ).

Theorem 58 (Representation). If K is a KAT and F is the KAT of all binary

relations on a finite set S, then K � F ∼= Mat(S,K).

Proof. Recall that the KAT F of binary relations on a finite set S is isomorphic

to Mat(S, 2K) where 2K = {0K , 1K}, and hence it is a subalgebra of Mat(S,K).

Define the map

h : Trm(K,F )→ Mat(S,K)

by putting h(cx) = x1Mat(S,K) (where the operation here is scalar multiplication)

and h(cφ) = φ. Note that for every equation f = g in ∆K ∪ ∆F it holds that

h(f) = h(g) in Mat(S,K). For example, if x, y ∈ K then the equation cx; cy = cx;y

is in the diagram ∆K and we have

h(cx; cy) = h(cx) · h(cy) = (x1Mat(S,K)) · (y1Mat(S,K)) = (x; y)1Mat(S,K) = h(cx;y).

For a commutativity equation cx; cφ = cφ; cx in D observe that:

h(cx; cφ) = h(cx) · h(cφ) = (x1Mat(S,K) · φ = xφ

h(cφ; cx) = h(cφ) · h(cx) = φ · (x1Mat(S,K)) = xφ

Since Mat(S,K) is a KAT, it follows that for every equation f = g in EK,F

we have h(f) = h(g) in Mat(S,K). So, we can define the homomorphism

h1 : K � F → Mat(S,K) on the equivalence classes. We claim that h1 is sur-

jective. Indeed, we have for every matrix M in Mat(S,K):

h1

(∑
ρ,σ ι1(Mρσ); ι2(ρ?;σ!)

)
=
∑

ρ,σMρσ(ρ?;σ!) = M.

It remains to show that h1 is injective. Let f , g be terms of Trm(K,F ) with

h1([f ]) = h1([g]). We know from Lemma 57 that there are functions x, y : S×S →

K such that:

[f ] =
∑

ρ,σ ι1(x(ρ, σ)); ι2(ρ?;σ!) [g] =
∑

ρ,σ ι1(y(ρ, σ)); ι2(ρ?;σ!)
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The function x and y are, in fact, elements of Mat(S,K). From the assumption

we get:

h1([f ]) = h1([g]) =⇒
∑

ρ,σ x(ρ, σ)(ρ?;σ!) =
∑

ρ,σ y(ρ, σ)(ρ?;σ!)

=⇒ x(ρ, σ) = y(ρ, σ) for all ρ, σ

=⇒ x = y.

It follows that [f ] = [g], and the proof is thus complete.

Corollary 59. If K is a KAT and F is any KAT of binary relations on a finite set

S, then K � F is isomorphic to a subalgebra of Mat(S,K).

Proof. Let F ′ be the KAT of all binary relations on S, which means that there is an

injective homomorphism k : F → F ′. This lifts to an injective homomorphism

k : K � F → K � F ′. Since K � F ′ ∼= Mat(S,K) by Theorem 58, K � F is

isomorphic to a subalgebra of Mat(S,K).

Corollary 60 (Injectivity). Let K be an arbitrary KAT and F be a finite KAT.

Then, the coprojection map ι1 : K → K�F is injective, i.e., ι1(x) = ι1(y) implies

that x = y.

Proof. The isomorphism h1 : K�F → Mat(F,K) that we defined in the proof of

Theorem 58 sends ι1(x) to the matrix x1Mat(F,K). So, the assumption ι1(x) = ι1(y)

implies that h1(ι1(x)) = h1(ι1(y)), and therefore x = y.

If we instantiate the finite KAT F of Corollary 60 to the free KAT Kn over

the mutable tests Tn (see Theorem 53), then we obtain that every KAT K can be

conservatively extended with n mutable tests. So, this extension K � Kn does

not affect the theory of K.
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3.4 KAT and Extra Mutable Tests

Using the commutative coproduct construction of the previous section and the

crucial representation result (Theorem 58), we will obtain easily several concrete

completeness theorems.

Let (K,B,+, ; ,∗ , 0, 1,¬) be an arbitrary KAT. We consider expressions that

involve constants for the elements of K as well as extra mutable tests Tn. The

grammar is:

test terms p, q ::= 0 | 1 | cb for b ∈ B | t? | t̄? | p+ q | p; q | ¬p

terms f , g ::= test term p | cx for x ∈ K | f + g | f ; g | f∗

We write Trm(K,Tn) for the set of all these terms.

Claim 61 (Commutativity Equations). For every element x ∈ K and every term

f ∈ Trm(Tn), the equation cx; f = f ; cx is provable in KAT+Dn, where Dn con-

sists of the equations

cx; t? = t?; cx cx; t̄? = t̄?; cx cx; t! = t!; cx cx; t̄! = t̄!; cx

for every x ∈ K and t ∈ Tn.

Proof. The base cases for t?, t̄?, t!, and t̄! are immediate from Dn. Moreover,

cx; 1 = cx = cx; 1 and cx; 0 = 0 = 0; cx for the constants 1 and 0 respectively. For

the step cases of choice and composition, we see (using the induction hypothe-

sis) that cx; f ; g = f ; cx; g = f ; g; cx and

cx; (f + g) = cx; f + cx; g = f ; cx + g; cx = (f + g); cx.

Finally, for iteration we observe that cx; f∗ = f∗; cx is implied by cx; f = f ; cx

(bisimulation rule 1.3), which is provable by the induction hypothesis.
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Theorem 62 (Completeness). The axioms KAT+Mutn+∆K+Dn are complete for

the equational theory of K � Kn, where Kn is the free KAT over the mutable

tests Tn.

Proof. Theorem 53 says that we can assume without loss of generality that the

algebra Kn is the KAT of all binary relations on the set S of Tn-assignments

Tn → 2 (see Definition 52). The term translation function [ · ] : Trm(K,Tn) →

Trm(K,Kn) is defined as:

[cx] = cx for x ∈ K [t?] = c(t?)S [t̄?] = c(t̄?)S [t!] = c(t!)S [t̄!] = c(t̄!)S

The canonical interpretation H : Trm(K,Kn) → K �Kn is specified by H(cx) =

ι1(x) for x ∈ K and H(cφ) = ι2(φ) for φ ∈ Kn. We will establish completeness

with respect to the interpretation

H ◦ [ · ] : Trm(K,Tn)→ K �Kn.

Let f and g be terms in Trm(K,Tn) for which it holds that H([f ]) = H([g]).

By definition of K � Kn this implies that the equation [f ] = [g] is provable in

KAT+∆K+∆Kn+D, where D consists of the equations cx; cφ = cφ; cx for x ∈ K

and φ ∈ Kn.

We know that there is a proof in the system KAT+∆K+∆Kn+D for the

equation [f ] = [g]. We replace in the proof every symbol cφ with the term∑
σ∈φ(ρ) test(ρ); set(σ). Now, the resulting proof is actually a proof in the system

KAT+Mutn+∆K+Dn. This is because every equation cx; cφ = cφ; cx of D cor-

responds to a provable equation of the form cx; f = f ; cx given by Claim 61.

Moreover, every equation of the diagram ∆Kn can certainly be simulated in the

system KAT+Mutn, because it is complete for the equational theory of Kn.

Corollary 63 (Completeness). Let B and Σ be finite alphabets of primitive tests

and actions respectively. We write K for the free KAT on generators B and Σ.
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The axioms KAT+Mutn+D′′, where D′′ consists of the equations

p; t! = t!; p p; t̄! = t̄!; p ¬p; t! = t!;¬p ¬p; t̄! = t̄!;¬p

a; t? = t?; a a; t̄? = t̄?; a a; t! = t!; a a; t̄! = t̄!; a

for p ∈ B, a ∈ Σ and t ∈ Tn, are complete for the equational theory of K �Kn.

Proof. The axioms of D′′ are sufficient to prove the equations

f ; t? = t?; f f ; t̄? = t̄?; f f ; t! = t!; f f ; t̄! = t̄!; f

for every term over B and Σ. Theorem 62 then gives us easily the result.

3.4.1 A Folk Theorem of Program Schematology

In this section we illustrate how the system KAT+Mut+D can be used in prac-

tice. We will show, reasoning equationally in KAT+Mut+D, a classical result

of program schematology: Every while program can be simulated by a while

program with at most one while loop, assuming that we allow extra Boolean

variables.

We work with an imperative programming language that has atomic pro-

grams Σ (written a, b, . . .), the constant program skip, atomic tests B, as well

as the constructs: sequential composition f ; g, conditional if p then f else g, and

iteration while p do f . These programming constructs are modeled in KAT as fol-

lows:

skip = 1 if e then f else g = ef + ēg

f ; g = fg while e do f = (ef)∗ē

We omit the sequential composition symbol ; in our KAT terms to reduce the

notational clutter, and we write ē to mean ¬e. There is a semantic justification
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for these translations, using the standard relation-theoretic semantics for the

input-output behavior of while programs.

The intuition for the construction we will present is that we need to in-

troduce extra Boolean variables that encode the control structure of the pro-

gram. These variables are modeled in KAT+Mut+D using extra mutable tests

t1, t2, t3, . . ., which are disjoint from B and Σ.

Commutativity axioms: The collection D of axioms, which forms part of the

system KAT+Mut+D, includes the following equations:

pt! = t!p pt̄! = t̄!p p̄t! = t!p̄ p̄t̄! = t̄!p̄

at? = t?a at̄? = t̄?a at! = t!a at̄! = t̄!a

for every primitive test p ∈ B and every atomic program a ∈ Σ. The above ax-

ioms say that the assignments t! and t̄! do not affect the truth value of primitive

regular tests. Moreover, a primitive program a ∈ Σ does not affect the truth

value of mutable tests.

Claim 64 (Test Commutativity). Let p be a test term over B and T (i.e., one that

may involve both regular and mutable tests). If the mutable test symbols t? and

t̄? do not appear in p, then the commutativity equations t!p = pt! and t̄!p = pt̄!

are provable in KAT+Mut+D.

Proof. Negations in tests can be pushed down to the leaves, so we assume with-

out loss of generality that only primitive tests p ∈ B can be negated. The proof

proceeds by induction on the test term. For an atomic test p or p̄ with p ∈ B, the

claim follows directly from the axioms of D. The cases of the constants 0 and 1

are trivial. For a mutable test s?, our assumption says that s 6= t and therefore

t!s? = s?t! and t̄!s? = s?t̄! are axioms of Mut. The argument is analogous for a
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mutable test s̄?. For the induction step, consider the case p+ q of choice:

t!(p+ q) = t!p+ t!q = pt! + qt! = (p+ q)t!

t̄!(p+ q) = t̄!p+ t̄!q = pt̄! + qt̄! = (p+ q)t̄!

The case pq is equally easy: t!pq = pt!q = pqt! and t̄!pq = pt̄!q = pqt̄!.

Claim 65 (Commutativity). Let f be an arbitrary term over B, Σ and T . If the

mutable test symbols t, t̄ do not appear in f , then the following equations are

provable in KAT+Mut+D:

t?f = ft? t̄?f = f t̄? t!f = ft! t̄!f = f t̄!

Proof. We only deal with the equation t!f = ft!, because for the other equations

the proof is completely analogous. We argue by induction on the structure of the

term f . If the term is a test, then the result follows from Claim 64. For an atomic

program a ∈ Σ, the stipulated axioms in D gives us the equation t!a = at!. For

an assignment s! the hypothesis says that s 6= t and therefore t!s! = s!t! from

Mut. The argument is similar for an assignment s̄!. For composition and choice

we have using the induction hypothesis:

t!fg = ft!g = fgt! t!(f + g) = t!f + t!g = ft! + gt! = (f + g)t!.

It remains to derive the equation t!f∗ = f∗t!. By virtue of the bisimulation

rule (1.3), it suffices to see that t!f = ft!, which is the induction hypothesis.

The main theorem of this section (Theorem 69 below) is a normal form the-

orem, from which the result we want to show follows immediately. Working in

a bottom-up fashion, every while program term is brought in the normal form.

That the transformed program in normal form is equivalent to the original one

is shown in KAT+Mut+D.
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A normal form is a term u;while p doφ; z, where u and φ are while-free terms

over Σ, B and T , p is a test-term over B and T , and z is of the form t̄1!t̄2! · · · t̄k!.

So, the pre-computation u, the while-guard p, and the while-body φ may involve

any of the extra mutable test symbols t1, . . . , tk, t̄1, . . . , t̄k. The post-computation

z = t̄1!t̄2! · · · t̄k! “zeroes out” all the extra mutable Boolean variables. Its role is

in some sense to simply project out the extra finite state that was used to model

control-flow.

Claim 66 (Base Case). Every while-free program f over B,Σ can be brought to

normal form.

Proof. Suppose that f is a while-free program term, and let t be a fresh mutable

test symbol. Intuitively, t? holds if f has not been executed yet, and t̄? holds after

f has been executed. Reasoning in KAT+Mut+D we will prove the equation

f ; z = t!;while t? do (f ; t̄!); z, where z = t̄!.

The main idea is to unfold the expression (t?f t̄!)∗ twice to obtain:

(t?f t̄!)∗ = 1 + t?f t̄!(t?f t̄!)∗ [unfold ∗]

= 1 + t?f t̄!(1 + t?f t̄!(t?f t̄!)∗) [unfold ∗]

= 1 + t?f t̄! + t?f t̄!t?f t̄!(t?f t̄!)∗ [distributivity]

= 1 + t?f t̄!. [because t̄!t? = 0]

We have used above the property t̄!t? = t̄!t̄?t? = t̄!0 = 0. We tranform the RHS

of the equation:

RHS = t!(t?f t̄!)∗¬t?t̄! [encoding]

= t!(t?f t̄!)∗t̄? [equations ¬t?t̄! = t̄?t̄! = t̄?]

= t!(1 + t?f t̄!)t̄? [see above]

= t!t̄? + t!t?f t̄!t̄? [distributivity]
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= t!t?f t̄!t̄?t̄! [equation t!t̄? = 0]

= t!f t̄!t̄! [equations t!t? = t! and t̄!t̄? = t̄!]

= t!f t̄!. [equation t̄!t̄! = t̄!]

Since the symbols t and t̄ do not appear in the term f , we can derive by virtue

of Claim 65 the equations t!f t̄! = ft!t̄! = f t̄! = f ; z.

Claim 67 (Conditional). Let f and g be while programs over Σ, B. Suppose that

the equations

f ; z = u;while p doφ; z g; z = u;while q doψ; z

are provable (where the right-hand side of each equation above is a normal

form). Then,

(if e then f else g); z; t̄! = if e then (t!;u) else (t̄!; v);

while ((t? ∧ p) ∨ (t̄? ∧ q)) do (if t? thenφ elseψ);

z; t̄!

is provable, where t is a fresh symbol for a mutable test.

Remark. The intuition for the given translation is that the fresh variable t

records the branch of the conditional that should be taken. So, t? holds when f

should be executed, and t̄? holds when g should be executed.

Proof. The while-free pre-computation in the normal form translation is equal to

et!u+ ēt̄!v. The guard of the while loop is t?p+ t̄?q, and the body is t?φ+ t̄?ψ. So,

((t? ∧ p) ∨ (t̄? ∧ q)); (if t? thenφ elseψ) = (t?p+ t̄q)(t?φ+ t̄?ψ)

= t?pt?φ+ t?pt̄?ψ + t̄qt?φ+ t̄qt̄?ψ

= t?pφ+ t̄?qψ.

The negation of the guard of the loop is

¬(t?p+ t̄?q) = (t̄? + p̄)(t? + q̄) = t̄?q̄ + t?p̄+ p̄q̄.
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First, we claim that t?(t?pφ)∗ = t?(pφ)∗. Since t? ≤ 1 and ∗ is monotone, we

have that (t?pφ)∗ ≤ (pφ)∗, and therefore t?(t?pφ)∗ ≤ t?(pφ)∗. In order to show

that t?(pφ)∗ ≤ t?(t?pφ)∗, it suffices to see that t? ≤ t?(t?pφ)∗, and that

t?(t?pφ)∗pφ = t?(1 + (t?pφ)∗t?pφ)pφ [unfold ∗]

= t?pφ+ t?(t?pφ)∗t?pφpφ [distributivity]

= t?t?pφ+ t?(t?pφ)∗t?t?pφpφ [equation t?t? = t?]

= t?t?pφ+ t?(t?pφ)∗t?pφt?pφ [t not in p, φ]

= t?(1 + (t?pφ)∗t?pφ)t?pφ [distributivity]

= t?(t?pφ)∗t?pφ [fold ∗]

≤ t?(t?pφ)∗. [inequality x∗x ≤ x∗]

Now, we want to show that t?(t?pφ+ t̄?qψ)∗ = t?(t?pφ)∗. By monotonicity of ∗,

the right-hand side is less than or equal to the left-hand side. For the other part,

we need to show that

t?(t?pφ)∗(t?pφ+ t̄?qψ) = [equation t?t? = t?]

t?t?(t?pφ)∗(t?pφ+ t̄?qψ) = [previous claim]

t?t?(pφ)∗(t?pφ+ t̄?qψ) = [t not in p, φ]

t?(pφ)∗t?(t?pφ+ t̄?qψ) = [distributivity and t?t̄? = 0]

t?(pφ)∗t?pφ = [previous claim]

t?(t?pφ)∗t?pφ,

which is ≤ t?(t?pφ)∗. Let W abbreviate the entire while loop of the normal form

translation. We have already seen that W = (t?pφ + t̄?qψ)∗(t̄?q̄ + t?p̄ + p̄q̄) and
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therefore

t?W = t?(t?pφ)∗(t̄?q̄ + t?p̄+ p̄q̄) [previous claim]

= t?(pφ)∗(t̄?q̄ + t?p̄+ p̄q̄) [previous claim]

= (pφ)∗t?(t̄?q̄ + t?p̄+ p̄q̄) [t not in p, φ]

= (pφ)∗(t?t̄?q̄ + t?t?p̄+ t?p̄q̄) [distributivity]

= (pφ)∗(t?p̄+ t?p̄q̄) [t?t̄? = 0 and t?t? = t?]

= (pφ)∗t?p̄. [because t?p̄q̄ ≤ t?p̄]

We denote by RHS the right-hand side of the equation we want to prove, and

we observe:

eRHS = e(et!u+ ēt̄!v)Wzt̄! [encoding]

= et!uWzt̄! [ee = e and eē = 0]

= et!t?uWzt̄! [equation t!t? = t!]

= et!ut?Wzt̄! [t does not appear in u]

= et!u(pφ)∗t?p̄zt̄! [previous claim]

= eu(pφ)∗p̄zt̄!, [t not in u, p, φ, z and t!t?t̄! = t!t̄! = t̄!]

which is equal to efzt̄! by the induction hypothesis. Similarly, the equation

ēRHS = ēgzt̄! can be derived. We thus conclude that

RHS = (e+ ē)RHS = eRHS + ēRHS = efzt̄! + ēgzt̄! = (ef + ēg)zt̄!,

which is equal to (if e then f else g); z; t̄!, namely the left-hand size of the desired

equation.

Claim 68 (Composition). Let f and g be while programs over Σ, B. Suppose that

the equations

f ; z = u;while p doφ; z g; z = u;while q doψ; z
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are provable (where the right-hand side of each equation above is a normal

form). Then, the equation

f ; g; z; t̄! = t!;u;

while (t? ∨ (t̄? ∧ q)) do

if t? then (if p thenφ else (z; t̄!; v)) elseψ;

z; t̄!.

is provable, where t is a fresh symbol for a mutable test.

Remark. The idea for the translation is that the fresh variable t records the

position of the execution. That is, t? holds while f is being executed, and t̄?

holds while g is being executed.

Proof. The negation of the guard of the while loop is ¬(t?+ t̄?q) = t̄?(t?+ q̄) = t̄?q̄.

The body of the loop is equal to t?(pφ+ p̄zt̄!v) + t̄?ψ = t?pφ+ t?p̄zt̄!v + t̄?ψ. So,

the Fisher-Ladner encoding of the while loop is

[(t? + t̄?q)(t?pφ+ t?p̄zt̄!v + t̄?ψ)]∗t̄?q̄ = [distributivity]

[t?pφ+ t?p̄zt̄!v + t̄?qψ]∗t̄?q̄ = [abbreviation]

(A+ t̄?qψ)∗t̄?q̄ = [denesting rule (1.2)]

A∗(t̄?qψA∗)∗t̄?q̄,

where we put A = t?pφ+ t?p̄zt̄!v.

From t̄?A = t̄?(t?pφ + t?p̄zt̄!v) = 0 ≤ t̄? we obtain that t̄?A∗ ≤ t̄?. Moreover,

t̄? ≤ t̄?A∗ and hence t̄?A∗ = t̄?. It follows that t̄?qψA∗ = qψt̄?A∗ = qψt̄?. Now,

we claim that (qψt̄?)∗t̄? = t̄?(qψ)∗. The inequality (qψt̄?)∗t̄? ≤ t̄?(qψ)∗ follows

from monotonicity of ∗. For the inequality t̄?(qψ)∗ ≤ (qψt̄?)∗t̄? we need to show

that

(qψt̄?)∗t̄?qψ = (qψt̄?)∗qψt̄? = (qψt̄?)∗qψt̄?t̄? ≤ (qψt̄?)∗t̄?
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We have thus shown that the while loop is equal to A∗(qψt̄?)∗t̄?q = A∗t̄?(qψ)∗q̄.

Now, we focus on simplifying the expression t?A∗t̄? = t?(t?pφ+ t?p̄zt̄!v)∗t̄?.

First, we observe that unfolding (t?p̄zt̄!v)∗ twice gives us the equation

(t?p̄zt̄!v)∗ = 1 + t?p̄zt̄!v. (3.3)

Moreover, t̄?(t?pφ)∗ = t̄?(1 + t?pφ(t?pφ)∗) = t̄?. Therefore, using the denesting

rule, we obtain

t?A∗t̄? = t?(t?pφ+ t?p̄zt̄!v)∗t̄? [definition of A]

= t?(t?pφ)∗(t?p̄zt̄!v(t?pφ)∗)∗t̄? [denesting rule]

= t?(t?pφ)∗(t?p̄zt̄!vt̄?(t?pφ)∗)∗t̄? [t̄! = t̄!t̄? and t not in v]

= t?(t?pφ)∗(t?p̄zt̄!vt̄?)∗t̄? [claim above]

= t?(t?pφ)∗(t?p̄zt̄!v)∗t̄? [t not in v and t̄! = t̄!t̄?]

= t?(t?pφ)∗(1 + t?p̄zt̄!v)t̄? [equation 3.3]

= t?(t?pφ)∗t̄? + t?(t?pφ)∗t?p̄zt̄!vt̄? [distributivity]

= t?(t?pφ)∗t?p̄zt̄!vt̄? [first term 0]

= t?(pφ)∗p̄zt̄!v. [because t?(t?pφ)∗t? = t?(pφ)∗]

Finally, we can work on the right-hand side of the equation we want to establish:

RHS = t!uA∗t̄?(qψ)∗q̄zt̄! [while loop is A∗t̄?(qψ)∗q̄]

= t!ut?A∗t̄?(qψ)∗q̄zt̄! [t! = t!t? and t not in u]

= t!ut?(pφ)∗p̄zt̄!v(qψ)∗q̄zt̄! [claim above]

= u(pφ)∗p̄zv(qψ)∗q̄zt̄!, [t not in u, p, φ, z, v, q, ψ]

which is equal by the assumptions to fzgzt̄! = fgzzt̄! = f ; g; z; t̄!.

Theorem 69 (The Folk Theorem). For every while program f over Σ, B, there

are while-free u, p, φ and a finite collection t1, . . . , tk of extra mutable tests such
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that f ; z = u;while p doφ; z is provable in the system KAT+Mut+D, where z =

t̄1!; . . . ; t̄k!.

Proof. The proof is by induction on the while program. Claim 66, Claim 67, and

Claim 68 already cover all the base cases, as well as the inductive cases of con-

ditionals and sequential composition. It remains to consider the case of while

loops. So, we suppose that

f ; z = u;while p doφ; z (equivalently, fz = u(pφ)∗p̄z)

is provable, where the right-hand side of the equation is a normal form. First,

we derive

(while e do f); z = (while e do (f ; z)); z.

The left-hand side is equal to (ef)∗ēz, and the right-hand side equal to (efz)∗ēz.

Since the test ē contains no mutable symbols, it suffices to show that (ef)∗z =

(efz)∗z. Now,

(efz)∗z ≤ (ef)∗z ⇐= efz(ef)∗z ≤ (ef)∗z,

which holds because efz(ef)∗z = ef(ef)∗zz ≤ (ef)∗z. Now, we observe that

(efz)∗z = z(efz)∗ by the bisimulation rule (1.3), because (efz)z = z(efz) (both

are equal to efz). So,

(ef)∗z ≤ (efz)∗z ⇐= ef(efz)∗z ≤ (efz)∗z,

which holds because ef(efz)∗z = ef(efz)∗zz = efz(efz)∗z ≤ (efz)∗z. Using

the claim we have just proved, we can bring the program in a more convenient

form:

(while e do f); z =
(
if e then

(
u;while (e+ p) do (if p thenφ else (z;u))

))
; z.
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The right-hand side of the above equation is provably equal to

ēz + eu[(e+ p)(pφ+ p̄zu)]∗(e+ p)z = ēz + eu[epφ+ ep̄zu+ pφ]∗ēp̄z

= ēz + eu(pφ+ ep̄zu)∗ēp̄z,

because epφ ≤ pφ. Using the denesting rule (x+ y)∗ = x∗(yx∗)∗ and the sliding

rule (xy)∗x = x(yx)∗, we see that this term is equal to

ēz + eu(pφ+ ep̄zu)∗ēp̄z = ēz + eu(pφ)∗(ep̄zu(pφ)∗)∗ēp̄z

= ēz + eu(pφ)∗(p̄zeu(pφ)∗)∗ēp̄z

= ēz + (eu(pφ)∗p̄z)∗eu(pφ)∗ēp̄zz

= ēz + (efz)∗eu(pφ)∗p̄zēz

= ēz + (efz)∗(efz)ēz

= (1 + (efz)∗(efz))ēz,

which is equal to (efz)∗ēz = (while e do (f ; z)); z = (while e do f); z. But we al-

ready know how to deal with conditional statements, so we use Claim 67 and

we are done.

3.5 Conclusion

We have shown how to axiomatically extend KAT with a finite amount of addi-

tional mutable state. This extra feature allows certain program transformations

to be effected at the propositional level without passing to a full first-order sys-

tem. The extension is conservative and deductively complete relative to the

theory of the underlying algebra. We have given a representation theorem of

the free models in terms of matrices.

An intriguing open problem is whether the commutative coproduct of two
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KATs is injective. We have shown that it is if one of the two cofactors is a KAT

of binary relations on a finite set.
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CHAPTER 4

KLEENE ALGEBRA AND THEORIES OF FIXPOINTS

4.1 Introduction

In the realm of equational systems for reasoning about iteration, two chief com-

plementary bodies of work stand out. One of these is iteration theories (IT), the

subject of the extensive monograph of Bloom and Ésik [17] as well as many other

authors (see the cited literature). The primary motivation for iteration theories

is to capture in abstract form the equational properties of iteration on structures

that arise in domain theory and program semantics, such as continuous func-

tions on ordered sets. Of central interest is the dagger operation †, a kind of

parameterized least fixpoint operator, that when applied to an object represent-

ing a simultaneous system of equations gives an object representing the least

solution of those equations. Much of the work on iteration theories involves

axiomatizing or otherwise characterizing the equational theory of iteration as

captured by †. Complete axiomatizations have been provided [42, 20, 34] as

well as other algebraic and categorical characterizations [3, 4, 120].

Bloom and Ésik claim that “. . . the notion of an iteration theory seems to

axiomatize the equational properties of all computationally interesting struc-

tures. . . ” [19]. This is true to a certain extent, certainly if one is interested only

in structures that arise in domain theory and programming language semantics.

However, it is not the entire story.

Another approach to equational reasoning about iteration that has met with

some success over the years is the notion of Kleene algebra (KA), the algebra of
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regular expressions. KA has a long history going back to the original paper

of Kleene [59] and was further developed by Conway, who coined the name

Kleene algebra in his 1971 monograph [31]. It has since been studied by many

authors. KA relies on an iteration operator ∗ that characterizes iteration in a

different way from †. Its principal models are not those of domain theory, but

rather basic algebraic objects such as sets of strings (in which ∗ gives the Kleene

asterate operation), binary relations (in which ∗ gives reflexive transitive clo-

sure), and other structures with applications in shortest path algorithms on

graphs and geometry of convex sets. Complete axiomatizations and complexity

analyses have been given; the regular sets of strings over an alphabet A form

the free KA on generators A in much the same way that the rational Σ⊥-trees

form the free IT on a signature Σ.

Although the two systems fulfill many of the same objectives and are re-

lated at some level, there are many technical and stylistic differences. Whereas

iteration theories are based on Lawvere theories, a categorical concept, Kleene

algebra operates primarily at a level of abstraction one click down. For this

reason, KA may be somewhat more accessible. KA has been shown to be use-

ful in several nontrivial static analysis and verification tasks (see e.g. [81, 62]).

Also, KA can model nondeterministic computation, whereas IT is primarily de-

terministic.

Nevertheless, both systems have claimed to capture the notion of iteration

in a fundamental way, and it is interesting to ask whether they can somehow be

reconciled. This is the investigation that we undertake in this chapter. We start

with the observation that ITs use the objects of a category to represent types.

Technically the objects of interest in ITs are morphisms f : n → m in a category
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whose objects are natural numbers, and the morphism f : n → m is meant to

model functions f : Am → An (the arrows are reversed for technical reasons).

Thus ITs might be captured by a version of KA with types. Although the pri-

mary version of KA is untyped, there is a notion of typed KA [74], although

it only has types of the form A → B, whereas to subsume IT it would need

products as well. The presence of products allows ITs to capture parameterized

fixpoints through the rule

f : n→ n+m

f † : n→ m

giving the parameterized least fixpoint f † : Am → An of a parameterized func-

tion f : Am × An → An. This would be possible to capture in KA if the typed

version had products, which it does not. On the other hand, KA allows the

modeling of nondeterministic computation, which IT does not, at least not in

any obvious way. Thus to capture both systems, it would seem that we need to

extend the type system of typed KA, or extend the categorical framework of IT

to handle nondeterminism, or both.

The result of our investigation is a common categorical framework based

on cartesian categories (categories with products) combined with a treatment

of nondeterminism based on closure operators on the homsets. Types are rep-

resented by objects in the category, and we identify the appropriate axioms in

the form of typed equations that allow equational reasoning on the morphisms.

Our framework captures iteration as represented in ITs and KAs in a common

language. We show how to define the KA operations as enrichments on the

morphisms and how to define † in terms of ∗.

Our main contributions are as follows.
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• Nondeterminism from closure operators. To accommodate nondeter-

minism, we consider a base category of “maps with possibly unde-

fined/diverging components” and we represent the available nondeter-

ministic choices with certain closed sets of morphisms. We axiomatize the

relevant properties for these base categories and the closure operators, and

we describe a general model-theoretic construction that gives rise to a non-

deterministic category with an infinitary choice operation. The structure of

binary products (pairing and projections) of the underlying category can

be lifted in a smooth way to corresponding operations in the nondeter-

ministic category.

• Distinguishing the deterministic arrows. Within our nondeterministic

categories, certain properties work only for deterministic computations.

We show how to capture the necessary properties of determinism by intro-

ducing a unary predicate D that distinguishes the deterministic elements

of each homset. We axiomatize properties that concern the preservation of

determinism, as well as properties of pairs that hold only in the determin-

istic part.

• Continuity and Nondeterminism. We specialize our construction of con-

servative extension with nondeterminism to the case where the base cat-

egory is ω-continuous. This case is particularly relevant because such ω-

continuous categories, which include standard domain-theoretic models,

can be equipped with least fixpoint operators.

• Capturing IT and KA. The equational theory IT of parametric fixpoints is

the set of equations between terms involving † that are true in the stan-

dard CPO model of ω-complete partial orders (ω-CPOs) and ω-continuous

maps. Our goal is to capture this theory axiomatically using a typed vari-
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ant of KA. For this, we consider the KA operations, including ∗, and a

weakened axiomatization of nondeterministic categories that includes all

the axioms of KA (except the strictness axiom). We show that our typed

KA with products extends conservatively the theory IT. This is our main

result.

• Model theory. Finally, our results imply that two particular constructions,

the lowerset-closure construction on the category Pposet (of pointed posets

and monotone maps) and the ideal-closure construction on the category

CPO (of ω-CPOs and ω-continuous maps), provide natural concrete mod-

els in that they give rise to nondeterministic categories, and hence to typed

KAs with products.

A detailed account of related work is given in §4.6.

4.2 Nondeterministic Structure from Closure Operators

As a first step in the development of our category-theoretic framework, we de-

fine axiomatically the class of pointed ordered categories with products (Def. 70 be-

low), where the notion of undefinedness (or divergence) appears explicitly in

the language as the constant ⊥. The homsets of these categories are partially

ordered by ≤, where the order is to be understood informally as follows: f ≤ g

when f has more undefined components that g (“f is less defined than g”).

The stipulated axioms capture properties of non-strict pairs (i.e., lazy or non-

strict evaluation of pairs), which means intuitively that forming a pair 〈v,⊥〉

with an undefined element allows one to recover the other component. So,
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product (X, Y ) 7→ X × Y
identity idX : X → X

bottom ⊥XY : X → Y

left projection πXY1 : X × Y → X

right projection πXY2 : X × Y → Y

composition f : X → Y g : Y → Z

f ; g : X → Z

pairing f : X → Y g : X → Z

〈f, g〉 : X → Y × Z

product
f : X → Y g : X ′ → Y ′

f × g , 〈π1; f, π2; g〉 : X ×X ′ → Y × Y ′

Figure 4.1: Constants and operations for categories with binary products, where
the homsets have additional pointed poset structure.

a non-strict pair with an undefined component is not itself necessarily unde-

fined. Ordinarily, in the case of eager pairs, a pair 〈v,⊥〉 would be equal to ⊥

by strictness. Intuitively, the computation of an eager pair 〈v,⊥〉, where v is

a value and ⊥ denotes a diverging computation, would also be diverging, i.e.,

〈v,⊥〉 = ⊥. This makes it impossible to recover the left component v of the pair:

〈v,⊥〉; π1 = ⊥; π1 = ⊥.

Our goal in this section is to describe a general model-theoretic construction

that enriches any such pointed ordered category C with additional nondetermin-

istic structure. The idea is that we can model a nondeterministic program as a

“closed” set of C-arrows, where the elements of the set describe the available

nondeterministic choices. For this we need to consider a family cl of closure

operators for the homsets of C that interact reasonably with the category. Our

main result is that the base category C and the closure operators cl give rise to

a structure Ccl that comes equipped with an infinitary nondeterministic operation.

Moreover, there is an embedding from C into Ccl and the image of this embed-

ding is to be understood as the deterministic subcategory of Ccl.
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A typed algebraic structure C consists of a class C0 of objects, a class C1 of ele-

ments, and the maps dom, cod : C1 → C0 called domain and codomain respectively.

For an element f ∈ C1 we write f : X → Y to denote that dom(f) = X and

cod(f) = Y . We then say that the expression X → Y is the type of f . The class

C(X, Y ), called a homset, consists of all elements of C that are of type X → Y . In

this paper we only consider typed structures whose homsets are sets, perhaps

endowed with extra algebraic or order-theoretic structure.

Definition 70. A pointed ordered category C with (binary) products is a typed alge-

braic structure with the operations of Figure 4.1 and a partial order ≤ on every

homset, that is a model of the following universal Horn axioms:

(f ; g);h = f ; (g;h) for f : X → Y , g : Y → Z and h : Z → W (4.1)

idX ; f = f for f : X → Y (4.2)

f ; idY = f for f : X → Y (4.3)

〈f, g〉; πY Z1 = f for f : X → Y and g : X → Z (4.4)

〈f, g〉; πY Z2 = g for f : X → Y and g : X → Z (4.5)

〈h; πY Z1 , h; πY Z2 〉 = h for h : X → Y × Z (4.6)

f ≤ f for f : X → Y (4.7)

f ≤ g ∧ g ≤ h =⇒ f ≤ h for f, g, h : X → Y (4.8)

f ≤ g ∧ g ≤ f =⇒ f = g for f, g, h : X → Y (4.9)

⊥XY ≤ f for f : X → Y (4.10)

f ≤ f ′ ∧ g ≤ g′ =⇒ f ; g ≤ f ′; g′ for f, f ′ : X → Y and g, g′ : Y → Z (4.11)

f ≤ f ′ ∧ g ≤ g′ =⇒ 〈f, g〉 ≤ 〈f ′, g′〉 for f, f ′ : X → Y and g, g′ : X → Z (4.12)

f ;⊥Y Z = ⊥XZ for f : X → Y (4.13)

〈⊥XY ,⊥XZ〉 = ⊥X,Y×Z : X → Y × Z (4.14)
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The above axiomatization consists of: the axioms (4.1)–(4.6) of categories with

binary products, axioms (4.7)–(4.10) asserting that the ≤ is a partial order with

least element ⊥, axioms (4.11)–(4.12) stating that composition and pairing are

monotone with respect to the partial order, as well as some additional axioms

(4.13)–(4.14) for the interaction of ⊥with composition and pairing.

Example 71 (Category Pposet). A pointed poset is a partial order (X,≤) with a

least element, which we typically denote by⊥X . We call Pposet the category of

pointed posets and monotone functions. The product X×Y of two objects X, Y

is the cartesian product together with the pointwise partial order: (x, y) ≤ (x′, y′)

iff x ≤ x′ and y ≤ y′. The least element of X × Y is the pair ⊥X×Y = (⊥X ,⊥Y ) of

the least elements ⊥X and ⊥Y of X and Y respectively. The projections and the

pairing operation are defined in the expected way:

π1(x, y) = x π2(x, y) = y 〈f, g〉(x) = (f(x), g(x)) for all x ∈ X

for maps f ∈ Pposet(X, Y ) and g ∈ Pposet(X,Z). The partial order ≤ on

Pposet(X, Y ) is defined pointwise: f ≤ g iff f(x) ≤ g(x) for all x ∈ X . The least

element ⊥XY of Pposet(X, Y ) is the constant mapping given by ⊥XY (x) = ⊥Y

for all x ∈ X . We observe that all constants idX , πXY1 , πXY2 , ⊥XY are monotone

maps, and the operations ; and 〈·, ·〉 preserve monotonicity. It is easy to ver-

ify that Pposet is a pointed ordered category with binary products, that is, it

satisfies all axioms of Definition 70.

Example 72 (Category Partial). Let A be a base type, and define the set of types

X, Y, . . . to be given by the grammar X, Y ::= A | X × Y . Let S be a nonempty

base set, and define the interpretation J·K of types as posets in the following way:

JAK , S ∪ {⊥S} JX × Y K , JXK× JY K

where ⊥S is a fresh symbol denoting undefinedness. The order on JAK is given

by⊥S ≤ x for all x ∈ S, and the order on JX×Y K is defined componentwise from
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the orders on JXK and JY K. We will define now the typed structure PartialS of

partial functions with lazy products (over the base set S) . The objects of PartialS

are the (syntactic) types we defined before. The homset PartialS(X, Y ) consists

of formal triples of the form f : X ⇀ Y , where X, Y are types and f is a mono-

tone function of type f : JXK→ JY K. The constant elements id, π1, π2,⊥ and the

operations ; and 〈·, ·〉 are defined as in Pposet. Since PartialS is (isomorphic to)

a substructure of Pposet, it is also a pointed ordered category with products.

Definition 73 (Closure Operator). Let cl be a function of type ℘X → ℘X , where

℘X is the powerset of the set X . We say that cl is a closure operator on X if it is:

1. Increasing: A ⊆ cl(A) for every subset A ⊆ X .

2. Monotone: For all subsets A,B ⊆ X , if A ⊆ B then cl(A) ⊆ cl(B).

3. Idempotent: cl(cl(A)) = cl(A) for every subset A ⊆ X .

For an element x ∈ X , we write cl(x) to mean cl({x}). A subset A ⊆ X is

said to be closed (with respect to the closure operator cl) if it satisfies cl(A) = A.

Assuming that X is partially ordered by ≤, we say that cl respects the order if

x ≤ y implies cl(x) ⊆ cl(y) for all x, y ∈ X .

Observation 74. Let (X,≤) be a partial order and cl be a closure operator on

X that respects the order. We observe that every cl(A) for A ⊆ X is closed

downwards, that is, y ∈ cl(A) and x ≤ y imply that x ∈ cl(A).

Let (X,≤) be a partial order and A be a subset of X . We define

↓A , {x′ ∈ X | x′ ≤ x for some x ∈ A}.

If x is an element of X , we put ↓x = ↓{x}.

Example 75 (Lowersets). Let X be a pointed poset. Define the operator cl≤X :
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℘X → ℘X as

cl≤X(A) , {⊥X} ∪ ↓A (4.15)

for a subset A ⊆ X . Equivalently, we can define cl≤X(A) to be the smallest

nonempty subset of X that contains A and is closed downwards. It is easy to

see that cl≤X is a closure operator that respects the order ≤ of X . The closed sets

w.r.t. to cl≤X are the nonempty subsets of X that are closed downwards. For an

element x ∈ X in particular, we have that cl≤X(x) = ↓x.

As mentioned before, we want to model nondeterminism using “closed sets”

that describe the available nondeterministic choices. Below, we put forward

a list of desired properties for closure operators cl on the homsets of a base

category C. These properties say that the operators cl give rise to a reasonable

notion of nondeterminism.

Definition 76 (Category With Closure Operator). Let C be a pointed ordered

category with products, and suppose that we are given a closure operator clXY

on every homset C(X, Y ). We say that the operators cl interact well with the

category C if the following are satisfied:

1. Every operator clXY respects the order of C(X, Y ) (see Definition 73).

2. For all elements f, g ∈ C(X, Y ), clXY (f) = clXY (g) implies that f = g.

3. The closure operators interact well with the composition of the category:

∅ 6= F ⊆ C(X, Y ) ∅ 6= G ⊆ C(Y, Z)

f ∈ cl(F ) ∧ g ∈ cl(G) =⇒ f ; g ∈ cl(F ;G)
.

4. The closure operators interact well with the binary products of the category:

∅ 6= F ⊆ C(X, Y ) ∅ 6= G ⊆ C(X,Z)

f ∈ cl(F ) ∧ g ∈ cl(G) =⇒ 〈f, g〉 ∈ cl(〈F,G〉)
.

Notation. We have used above composition and pairing operations lifted to sets
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of morphisms:

F ⊆ C(X, Y ) G ⊆ C(Y, Z)

F ;G , {f ; g | f ∈ F and g ∈ G}
F ⊆ C(X, Y ) G ⊆ C(X,Z)

〈F,G〉 , {〈f, g〉 | f ∈ F and g ∈ G}
Moreover, we use the abbreviations f ;G = {f};G and F ; g = F ; {g}.

Let us try to give now an intuitive explanation for some of the properties

listed in the above definition. We demand that cl respects the order, because we

want the nondeterministic choice operation to be compatible with the “less de-

fined than” order ≤ of the category C. Property 3 about the interaction between

cl and composition ; says informally the following: Suppose that one possible

way to resolve the nondeterminism of the nondeterministic programs φ and ψ

is described by the (deterministic) C-arrows f and g. Then, the C-arrow f ; g is a

possible way to resolve the nondeterminism of the composite nondeterministic

program φ;ψ.

Lemma 77 (Lowersets Interact Well). Let C be a pointed ordered category with

products. The family cl≤ of lowerset closure operators cl≤XY (see Example 75 for

the definition) on every homset C(X, Y ) interacts well with C.

Proof. The homset C(X, Y ) is partially ordered by≤ and its least element is⊥XY .

First, let us recall the definition of the operator cl≤XY on C(X, Y ):

cl≤XY (F ) = {⊥XY } ∪ ↓F = {⊥XY } ∪ {f ′ ∈ C(X, Y ) | f ′ ≤ f for some f ∈ F}

for a subset F ⊆ C(X, Y ). For the particular case where F is nonempty, the

definition becomes cl≤XY (F ) = ↓F . We have already discussed in Example 75

that cl≤XY is a closure operator that respects the order. For all elements f and g

of C(X, Y ), the equality cl(f) = cl(g) means that ↓f = ↓g, which in turn implies

that f = g.
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Now, we show that cl≤ interacts well with composition. Consider nonempty

subsets F ⊆ C(X, Y ) and G ⊆ C(Y, Z) and elements f ′ ∈ cl≤(F ) and g′ ∈ cl≤(G).

There are f ∈ F and g ∈ G such that f ′ ≤ f and g′ ≤ g. It follows that

f ; g ∈ F ;G ⊆ cl≤(F ;G) and f ′; g′ ≤ f ; g by monotonicity of composition. Since

cl≤(F ;G) is closed downwards, we conclude that f ′; g′ is also in cl≤(F ;G). We

can show analogously that cl≤ interacts well with the pairing operation 〈·, ·〉

making use of the fact that pairing is monotone in both arguments.

As we outlined before, a base category C and an appropriate family cl of

closure operators on the homsets of C are sufficient to model a kind of nonde-

terminism. We give now the precise definition of the category Ccl of nondeter-

ministic arrows that corresponds to our previous intuitive descriptions.

Definition 78 (Nondeterministic Structure from Closure Operators). Let C be a

pointed ordered category with products, and clXY be a family of closure oper-

ations that interact well with C. We define the typed structure Ccl where each

homset Ccl(X, Y ) is the set of all closed subsets of C(X, Y ), together with the

following constants and operations:

ηX , cl(idX) F ;G , cl(F ;G) for F ⊆ C(X, Y ) and G ⊆ C(Y, Z)

⊥⊥XY , cl(⊥XY ) 〈〈F,G〉〉 , cl(〈F,G〉) for F ⊆ C(X, Y ) and G ⊆ C(X,Z)

$XY
1 , cl(πXY1 )

∑
i∈I Fi , cl(

⋃
i∈IFi) for Fi ⊆ C(X, Y ) with i ∈ I

$XY
2 , cl(πXY2 )

Every homset Ccl is partially ordered by ⊆. Finally, define DXY to be the subset

of Ccl(X, Y ) that contains the sets of the form cl(f) where f ∈ C(X, Y ). We think

ofDXY as a unary predicate consisting of the deterministic arrows of typeX  Y .

The axiomatic definition of a “nondeterministic category with products and
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product (X, Y ) 7→ X × Y
identity ηX : X  X

bottom ⊥⊥XY : X  Y

left projection $XY
1 : X × Y  X

right projection $XY
2 : X × Y  Y

composition φ : X  Y ψ : Y  Z

φ;ψ : X  Z

pairing φ : X  Y ψ : X  Z

〈〈φ, ψ〉〉 : X  Y × Z

product
φ : X  Y ψ : X ′  Y ′

φ⊗ ψ , 〈〈$1;φ,$2;ψ〉〉 : X ×X ′  Y × Y ′

arbitrary sum nonempty collection Φ of morphisms X  Y∑
Φ : X  Y

indexed sum
φi : X  Y index set I∑
i∈I φi ,

∑
{φi | i ∈ I} : X  Y

binary sum
φ, ψ : X  Y

φ+ ψ ,
∑
{φ, ψ} : X  Y

iteration
φ : X  X

φ∗ ,
∑

n≥0 φ
n

where φ0 , ηX and φn+1 , φn;φ

Figure 4.2: Constants and operations for nondeterministic categories with prod-
ucts and joins.

joins” that we give below (Definition 79) collects the main properties that we ex-

pect to be satisfied by nondeterministic programs with non-strict pairs. We have

chosen only those properties that are relevant for our later development. In par-

ticular, the given axiomatization is sufficiently strong to see that the deterministic

subcategory of a nondeterministic category is a model of the axiomatization of

Definition 70.

Definition 79 (Nondeterministic Category). Consider a typed algebraic struc-

ture with the operations of Figure 4.2 and a unary predicate D on every homset.

We say that the structure is a nondeterministic category with (binary) products and

(arbitrary) joins if it is a model of the following infinitary universal Horn axioms:

D(ηX) D($XY
1 ) D($XY

2 ) D(⊥⊥XY ) (4.16)
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D(φ) ∧D(ψ) =⇒ D(φ;ψ) for φ : X  Y and ψ : Y  Z (4.17)

D(φ) ∧D(ψ) =⇒ D(〈〈φ, ψ〉〉) for φ : X  Y and ψ : X  Z (4.18)

(φ;ψ);χ = φ; (ψ;χ) for φ : X  Y , ψ : Y  Z and χ : Z  W (4.19)

ηX;φ = φ for φ : X  Y (4.20)

φ; ηY = φ for φ : X  Y (4.21)

〈〈φ, ψ〉〉;$1 = φ for φ : X  Y and ψ : X  Z (4.22)

〈〈φ, ψ〉〉;$2 = ψ for φ : X  Y and ψ : X  Z (4.23)

〈〈χ;$1, χ;$2〉〉 ≥ χ for χ : X  Y × Z (4.24)

D(χ) =⇒ 〈〈χ;$1, χ;$2〉〉 = χ for χ : X  Y × Z (4.25)

D(φ) =⇒ φ; 〈〈ψ1, ψ2〉〉 = 〈〈φ;ψ1, φ;ψ2〉〉

for φ : X  Y and ψi : Y  Zi

(4.26)

〈〈φ1, φ2〉〉; (ψ1 ⊗ ψ2) = 〈〈φ1;ψ1, φ2;ψ2〉〉 for φi : X  Yi and ψi : Yi  Zi (4.27)

〈〈φ, ψ〉〉; 〈〈$2, $1〉〉 = 〈〈ψ, φ〉〉 for φ : X  Y and ψ : X  Z (4.28)

〈〈φ,$2〉〉; 〈〈ψ,$2〉〉 = 〈〈〈〈φ,$2〉〉;ψ,$2〉〉 for φ, ψ : X × Y  X (4.29)

⊥⊥XY ≤ φ for φ : X  Y (4.30)

φ;⊥⊥Y Z = ⊥⊥XZ for φ : X  Y (4.31)

〈〈⊥⊥XY ,⊥⊥XZ〉〉 = ⊥⊥X,Y×Z (4.32)∑
{φ} = φ for φ : X  Y (4.33)∑

i(
∑

j φij) =
∑

i,j φij for φij : X  Y (4.34)

(
∑

i φi);ψ =
∑

i φi;ψ for φi : X  Y and ψ : Y  Z (4.35)

φ; (
∑

i ψi) =
∑

i φ;ψi for φ : X  Y and ψi : Y  Z (4.36)

〈〈
∑

i φi, ψ〉〉 =
∑

i〈〈φi, ψ〉〉 for φi : X  Y and ψ : X  Z (4.37)

〈〈φ,
∑

i ψi〉〉 =
∑

i〈〈φ, ψi〉〉 for φ : X  Y and ψi : X  Z (4.38)

where the partial order ≤ is induced by + as follows: φ ≤ ψ iff φ + ψ = ψ. In
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Axioms (4.34)–(4.38) the indexes range over nonempty index sets. We say that D

is the predicate of deterministic morphisms. Axioms (4.16) say that the constants

ηX , $XY
1 , $XY

2 and⊥⊥XY are deterministic, and Axioms (4.17) and (4.18) say that

composition and pairing preserve determinism. We stress that the operations

×, $1, $2, 〈〈·, ·〉〉 do not give rise to categorical products.

Claim 80. Every nondeterministic category with products and joins satisfies:

〈〈$1, φ〉〉; 〈〈$1, ψ〉〉 = 〈〈$1, 〈〈$1, φ〉〉;ψ〉〉 for φ, ψ : X × Y  Y (4.39)

〈〈φ, ηY 〉〉; 〈〈ψ,$2〉〉 = 〈〈〈〈φ, ηY 〉〉;ψ, ηY 〉〉 for φ : Y  X and ψ : X × Y  X (4.40)

〈〈ηX , φ〉〉; 〈〈$1, ψ〉〉 = 〈〈ηX , 〈〈ηX , φ〉〉;ψ〉〉 for φ : X  Y and ψ : X × Y  Y (4.41)

〈〈φ,$2〉〉∗ = 〈〈〈〈φ,$2〉〉∗;$1, $2〉〉 for all φ : X × Y  X (4.42)

Proof. We show the claim by making crucial use of the axioms (4.28) and (4.29)

of nondeterministic categories.

Theorem 81 (First Embedding Theorem). Let C be a pointed ordered category

with products, and clXY be a family of closure operators that interact well with

C. Then, the typed structure Ccl is a nondeterministic category with products

and joins. Moreover, the map

cl : f ∈ C(X, Y ) 7→ clXY (f) ∈ Ccl(XY )

from the category C to the category Ccl is an injective order-preserving homo-

morphism. In other words, C is isomorphic to the deterministic subcategory of

Ccl.

Proof. Before showing the soundness of the axioms of Definition 79, we will
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establish the following useful properties:

cl(F ); cl(G) = cl(F ;G) for ∅ 6= F ⊆ C(X, Y ) and ∅ 6= G ⊆ C(Y, Z) (4.43)

〈〈cl(F ), cl(G)〉〉 = cl(〈F,G〉) for ∅ 6= F ⊆ C(X, Y ) and ∅ 6= G ⊆ C(X,Z) (4.44)

cl(
⋃
i∈Icl(Fi)) = cl(

⋃
i∈IFi) for Fi ⊆ C(X, Y ) with i ∈ I (4.45)

For the first equation, consider nonempty subsets F ⊆ C(X, Y ) andG ⊆ C(Y, Z).

We expand the definition of ; and the equation becomes cl(cl(F ); cl(G)) =

cl(F ;G). The operator cl is increasing, so we know that F ⊆ cl(F ) andG ⊆ cl(G).

It follows that F ;G ⊆ cl(F ); cl(G) and therefore cl(F ;G) ⊆ cl(cl(F ); cl(G))

(since cl is monotone). For the reverse containment, it suffices to show that

cl(F ); cl(G) ⊆ cl(F ;G) (because of idempotence of cl), which is a reformulation

of the hypothesis that cl interacts well with the composition ; of C. Similarly, we

can also show:

cl(F ; cl(G)) = cl(F ;G) cl(cl(F );G) = cl(F ;G)

With analogous arguments (involving that cl interacts well with 〈·, ·, 〉) we get:

cl(〈F, cl(G)〉) = cl(〈F,G〉)

cl(〈cl(F ), G〉) = cl(〈F,G〉)

cl(〈cl(F ), cl(G)〉) = cl(〈F,G〉)

for all nonempty F ⊆ C(X, Y ) and G ⊆ C(Y, Z). The equation 〈〈cl(F ), cl(G)〉〉 =

cl(〈F,G〉) follows. The third equation follows just from properties of the closure

operation.

Immediately from their definitions, we see that the constants ηX , ⊥⊥XY , $XY
1

and $XY
2 are deterministic. Now, we see that the operation ; preserves de-

terminism: cl(f); cl(g) = cl(f ; g) for f ∈ C(X, Y ) and g ∈ C(Y, Z). Sim-

ilarly, we can show that the pairing operation 〈·, ·〉 preserves determinism:

〈〈cl(f), cl(g)〉〉 = cl(〈f, g〉) for f ∈ C(X, Y ) and g ∈ C(X,Z).
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Using the properties that we proved in the first paragraph of the proof, we

continue to show the soundness of axioms (4.19)–(4.38). We expand the defini-

tion of the partial order for elements φ and ψ of Ccl(X, Y ): φ ≤ ψ iff φ + ψ = ψ

iff
∑
{φ, ψ} = ψ iff cl(φ ∪ ψ) = ψ iff φ ∪ ψ ⊆ ψ iff φ ⊆ ψ. We write F, Fi, G,Gi, H

below to range over nonempty subsets of C-morphisms of the appropriate type,

and f, h to range over C-morphisms.

(F ;G);H = cl(F ;G);H = cl(cl(F ;G);H)

= cl((F ;G);H) = cl(F ; (G;H))

F ; (G;H) = F ; cl(G;H) = cl(F ; cl(G;H)) = cl(F ; (G;H))

ηX;F = cl(idX);F = cl(cl(idX);F ) = cl(idX ;F ) = cl(F )

F ; ηY = F ; cl(idY ) = cl(F ; cl(idY )) = cl(F ; idY ) = cl(F )

〈〈F,G〉〉;$1 = cl(〈F,G〉); cl(π1) = cl(〈F,G〉; π1) = cl(F )

〈〈H;$1, H;$2〉〉 = 〈〈H; cl(π1), H; cl(π2)〉〉 = 〈〈cl(H; cl(π1)), cl(H; cl(π2))〉〉

= 〈〈cl(H; π1), cl(H; π2)〉〉 = cl(〈H; π1, H; π2〉) ⊇ cl(H)

〈〈cl(h);$1, cl(h);$2〉〉 = 〈〈cl(h); cl(π1), cl(h); cl(π2)〉〉 = 〈〈cl(h; π1), cl(h; π2)〉〉

= cl(〈h; π1, h; π2〉) = cl(h)

cl(f); 〈〈G1, G2〉〉 = cl(f); cl(〈G1, G2〉) = cl(f ; 〈G1, G2〉) = cl(〈f ;G1, f ;G2〉)

〈〈cl(f);G1, cl(f);G2〉〉 = 〈〈cl(cl(f);G1), cl(cl(f);G2)〉〉 = 〈〈cl(f ;G1), cl(f ;G2)〉〉

= cl(〈f ;G1, f ;G2〉)

〈〈F1, F2〉〉; (G1 ⊗G2) = 〈〈F1, F2〉〉; 〈〈$1;G1, $2;G2〉〉

= cl(〈F1, F2〉); 〈〈cl(π1;G1), cl(π2;G2)〉〉

= cl(〈F1, F2〉); cl(〈π1;G1, π2;G2〉)

= cl(〈F1, F2〉; 〈π1;G1, π2;G2〉)

= cl(〈F1;G1, F2;G2〉)
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〈〈F1;G1, F2;G2〉〉 = 〈〈cl(F1;G1), cl(F2;G2)〉〉 = cl(〈F1;G1, F2;G2〉)

〈〈F,G〉〉; 〈〈$2, $1〉〉 = cl(〈F,G〉); cl(〈π2, π1〉) = cl(〈F,G〉; 〈π2, π1〉)

= cl(〈G,F 〉) = 〈〈G,F 〉〉

〈〈F,$2〉〉; 〈〈G,$2〉〉 = cl(〈F, π2〉); cl(〈G, π2〉) = cl(〈F, π2〉; 〈G, π2〉)

= cl(〈〈F, π2〉;G, π2〉)

〈〈〈〈F,$2〉〉;G,$2〉〉 = 〈〈cl(〈F, π2〉);G,$2〉〉 = 〈〈cl(〈F, π2〉;G), $2〉〉

= cl(〈〈F, π2〉;G, π2〉)

cl(F ) = cl(
⋃
f∈F{f}) = cl(

⋃
f∈F cl(f))

⊇ cl(
⋃
f∈F cl(⊥XY )) = cl(⊥XY )

F ;⊥⊥Y Z = F ; cl(⊥Y Z) = cl(F ; cl(⊥Y Z)) = cl(F ;⊥Y Z)

= cl(⊥XZ) = ⊥⊥XZ

〈〈⊥⊥XY ,⊥⊥XZ〉〉 = 〈〈cl(⊥XY ), cl(⊥XZ)〉〉 = cl(〈⊥XY ,⊥XZ〉)

= cl(⊥X,Y×Z) = ⊥⊥X,Y×Z∑
{cl(F )} = cl(cl(F )) = cl(F )∑

i(
∑

j cl(Fij)) =
∑

i cl(
⋃
jcl(Fij)) =

∑
i cl(
⋃
jFij) = cl(

⋃
icl(
⋃
jFij))

= cl(
⋃
i

⋃
jFij) = cl(

⋃
i,jFij)∑

i,j cl(Fij) = cl(
⋃
i,jcl(Fij)) = cl(

⋃
i,jFij)

(
∑

i Fi);G = cl(
⋃
iFi);G = cl(cl(

⋃
iFi);G) = cl((

⋃
iFi);G) = cl(

⋃
iFi;G)∑

i Fi;G =
∑

i cl(Fi;G) = cl(
⋃
icl(Fi;G)) = cl(

⋃
iFi;G)

〈〈
∑

i Fi, G〉〉 = 〈〈cl(
⋃
iFi), G〉〉 = cl(〈cl(

⋃
iFi), G〉)

= cl(〈
⋃
iFi, G〉) = cl(

⋃
i〈Fi, G〉)∑

i〈〈Fi, G〉〉 =
∑

i cl(〈Fi, G〉) = cl(
⋃
icl(〈Fi, G〉)) = cl(

⋃
i〈Fi, G〉)

So, Ccl is a nondeterministic category with binary products and arbitrary joins.
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That the map cl is injective follows immediately from Condition (2) in Def-

inition 76. The map cl is order-preserving because it respects the order: f ≤ g

implies that cl(f) ⊆ cl(g). To show that cl is a homomorphism, we have to see

that it preserves the constants and operations:

cl(idX) = ηX cl(πXY1 ) = $XY
1 cl(f ; g) = cl(f); cl(g)

cl(⊥XY ) = ⊥⊥XY cl(πXY2 ) = $XY
2 cl(〈f, g〉) = 〈〈cl(f), cl(g)〉〉

The above equations follow from the definition of the constants for Ccl and from

the properties of cl that we established in the beginning of the proof.

Corollary 82 (Embedding With Lowersets). Let C be a pointed ordered category

with products, and cl≤ be the family of lowerset closure operators on C. Then,

Ccl≤ is a nondeterministic category with products and joins, and the map f 7→

cl(f) embeds C into Ccl≤ .

Proof. Immediately from Theorem 81 and Lemma 77.

The main result of this section (Theorem 81 and Corollary 82) is a model-

theoretic conservative extension of an arbitrary pointed ordered category with

products into a structure that possesses nondeterminism. In the next section we

will consider the case where the base category is ω-continuous, which induces

an additional parametric least fixpoint operation.

4.3 Continuity, Least Fixpoints and Nondeterminism

In the previous section we showed how a very general class of ordered typed

structures with products can be conservatively extended with nondetermin-

ism. Here we restrict our attention to the smaller class of ω-continuous typed
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structures, whose homsets are ω-CPOs and composition is ω-continuous in both

arguments. This subclass is particularly interesting because in every such ω-

continuous category we can define a least fixpoint operation in terms of suprema

of countable chains. In particular, our standard model CPO (the category of ω-

CPOs and ω-continuous functions) belongs to this subclass. We will describe in

this section a new model-theoretic construction that conservatively extends any

ω-continuous category with nondeterministic structure. We make use of some

of the results of §4.2, but the setting of this section is more specific and we can

thus prove more useful results.

An ω-complete partial order (ω-CPO) is a pointed poset (X,≤) with least el-

ement ⊥X that is ω-complete: every ω-chain (countably infinite chain) x0 ≤

x1 ≤ · · · has a supremum supi xi in X . If X, Y are ω-CPOs, then so is their

cartesian product X × Y under the componentwise order. For an ω-chain

(x0, y0) ≤ (x1, y1) ≤ (x2, y2) ≤ · · · in X × Y we have that

supi(xi, yi) = (supi xi, supi yi).

A function f : X → Y between ω-CPOs X and Y is called ω-continuous if it

preserves suprema of ω-chains: for every ω-chain x0 ≤ x1 ≤ x2 ≤ · · · in X ,

it holds that f(supi xi) = supi f(xi). It is easy to see that every ω-continuous

function is monotone.

Definition 83. An ω-continuous category with (binary) products is a pointed or-

dered category C with binary products whose homsets are ω-CPOs and satisfies

additionally the equations:

(supi fi); g = supi(fi; g) for ω-chain fi : X → Y and g : Y → Z (4.46)

f ; (supi gi) = supi(f ; gi) for f : X → Y and ω-chain gi : Y → Z (4.47)

The above equations say that composition is ω-continuous in both arguments.
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Observation 84 (Pairing Is Continuous). Let C be an ω-continuous category with

products. We claim that the pairing operation 〈·, ·〉 is ω-continuous in both ar-

guments:

〈supi fi, g〉 = supi〈fi, g〉 for ω-chain fi : X → Y and g : X → Z (4.48)

〈f, supi gi〉 = supi〈f, gi〉 for f : X → Y and ω-chain gi : X → Z (4.49)

We show how to derive Equation 4.48 using the axioms we stipulated for C:

(supi〈fi, g〉);π1 = supi(〈fi, g〉; π1) = supi fi

(supi〈fi, g〉);π2 = supi(〈fi, g〉; π2) = supi g = g

which imply the desired equation by the uniqueness axiom (4.6) for pairing.

The proof for Equation 4.49 is analogous and we therefore omit it.

Example 85 (Category CPO). For ω-CPOs X and Y , we denote by [X → Y ] the

ω-CPO of all ω-continuous functions from X to Y ordered pointwise. We have

to verify that [X → Y ] is closed under suprema of ω-chains. The supremum of

an ω-chain f0 ≤ f1 ≤ f2 ≤ · · · in [X → Y ] is supi fi = λx ∈ X. supi fi(x) and it is

ω-continuous:

(supi fi)(supj xj) = supi(fi(supj xj)) [definition of supi fi]

= supi supj fi(xj) [every fi is ω-continuous]

= supj supi fi(xj) [interchange sups]

= supj(supi fi)(xj) [definition of supi fi]

for a chain x0 ≤ x1 ≤ x2 ≤ · · · in X . The ω-continuous functions on ω-CPOs are

closed under well-typed composition and pairing and contain all identities and

projections. Moreover, composition is ω-continuous in both arguments. Thus,

ω-CPOs and ω-continuous maps form an ω-continuous category with binary

products denoted CPO.
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Definition 86 (Ideals and Closure). LetX be an ω-CPO. A subset I ⊆ X is called

an ideal of X if it is nonempty, closed downwards, and closed under suprema of

ω-chains. We define the operator clIX : ℘X → ℘X as follows: clIX(A) is the small-

est ideal of X that contains A. For an element x ∈ X we have that clIX(x) = ↓x,

because ↓x is closed under suprema of ω-chains. Immediately from the defini-

tion of clIX , we obtain that it is a closure operator that respects the order. For a

subset A ⊆ X , define sup(A) to be the set of suprema of all ω-chains in A:

sup(A) , {supi xi | ω-chain (xi)i<ω in A}. (4.50)

Now, we define the operator τ on X as τ(A) = ↓A ∪ sup(A) for A ⊆ X and the

sequence:

τ0(A) , {⊥X} ∪ A τα+1(A) , τ(τα(A)) τλ(A) ,
⋃
α<λτα(A) (4.51)

for a limit ordinal λ. It holds that A ⊆ τ(A) and therefore the transfinite se-

quence (τα(A))α∈Ord is increasing: α ≤ β implies τα(A) ⊆ τβ(A). Finally, we

have the equivalent definition

clIX(A) =
⋃
α∈Ordτα(A),

where Ord is the class of all ordinals.

Lemma 87 (Ideals Interact Well). Let C be an ω-continuous category with prod-

ucts. The family clI of closure operators clIXY on every homset C(X, Y ) interacts

well with C (Definition 76).

Proof. We introduced the definition of the ideal closure operator clI in Defini-

tion 86. We argue as in Lemma 77 that clI respects the order, and also that

clI(f) = clI(g) implies f = g.

Now, we have to show that clI interacts well with composition. Consider

arbitrary nonempty subsets F ⊆ C(X, Y ) and G ⊆ C(Y, Z). Since the sets F
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and G are nonempty, we can consider here a slightly simpler definition for the

sequence τα than the one of Equation (4.51), with the only difference being that

now τ0 = A. We will establish the claim: for every ordinal α,

f ∈ τα(F ) ∧ g ∈ τα(G) =⇒ f ; g ∈ τα(F ;G).

The proof is by transfinite induction. The base case is trivial: f ∈ τ0(F ) = F and

g ∈ τ0(G) = G imply that f ; g ∈ F ;G = τ0(F ;G). For the case of a successor

ordinal, we suppose that f ∈ τα+1(F ) = τ(τα(F )) and g ∈ τα+1(G) = τ(τα(G)),

and we examine cases:

1. Case: f ≤ f ′ for some f ′ ∈ τα(F ) and g ≤ g′ for some g′ ∈ τα(G). From the

induction hypothesis we know that f ′; g′ ∈ τα(F ;G) and from monotonic-

ity of ; we get that f ; g ≤ f ′; g′. It follows that

f ; g ∈ ↓τα(F ;G) ⊆ τ(τα(F ;G)) = τα+1(F ;G).

2. Case: f ≤ f ′ for some f ′ ∈ τα(F ) and g = supi gi for an ω-chain (gi)i in

τα(G). The induction hypothesis says that every f ′; gi is in τα(F ;G). Since

; is monotone, the sequence (f ′; gi)i is an ω-chain in τα(F ;G). But C is an ω-

continuous category (Definition 83), which implies that composition is ω-

continuous in the right argument and hence supi f
′; gi = f ′; supi gi = f ′; g.

So, we conclude that f ′; g is in sup(τα(F ;G)) ⊆ τα+1(F ;G).

3. Case: f = supi fi for an ω-chain (fi)i in τα(F ) and g ≤ g′ for some g′ ∈

τα(G). The proof is analogous to the one given in the previous case, where

now we use the fact that composition is ω-continuous in the first argument.

4. Case: f = supi fi for an ω-chain (fi)i in τα(F ) and g = supi gi for an

ω-chain (gi)i in τα(G). Composition is ω-continuous in both arguments,

which gives us that

f ; g = (supi fi); (supj gj) = supi(fi; supj gj) = supi supj fi; gj = supi fi; gi.
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From the induction hypothesis we get that every fi; gi is in τα(F ;G), so

(fi; gi)i is an ω-chain in τα(F ;G). We thus obtain that f ; g = supi fi; gi is in

sup(τα(F ;G)) ⊆ τα+1(F ;G).

From the claim we have just proved, we easily obtain the desired property: f ∈

clI(F ) and g ∈ clI(G) imply that f ; g ∈ clI(F ;G). The hypotheses say that f ∈

τα(F ) and g ∈ τβ(G) for some ordinals α and β. Take any ordinal γ with α, β ≤

γ. It follows that f ∈ τγ(F ) and g ∈ τγ(G) and by our claim we deduce that

f ; g ∈ τγ(F ;G) ⊆ clI(F ;G).

We also have to prove that clI interacts well with the pairing operation 〈·, ·〉.

Since C is ω-continuous, we know that pairing is monotone and ω-continuous in

both arguments. The proof proceeds exactly as in the case of composition.

Of central interest in the present work is the dagger † operation, which is

interpreted in the standard CPO model as follows: f †(y) is the least fixpoint of

the mapping fy : x 7→ f(x, y) for a CPO-function of type f : X × Y → X . More

abstractly, we consider below in Definition 88 an axiomatically-defined class of

ordered categories with a dagger operation that satisfies some typical properties

of least fixpoints.

Definition 88 (Category With Parametric Least Fixpoints). Let C be a pointed

ordered category with products (Definition 70). We say that C has parametric

least fixpoints if it has additionally a dagger operation † with the typing rule

f : X × Y → X

f † : Y → X
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that satisfies the following three universal Horn axioms [34]:

〈f †, idY 〉; f ≤ f † for f : X × Y → X (4.52)

〈g, idY 〉; f ≤ g =⇒ f † ≤ g for f : X × Y → X and g : Y → X (4.53)

g; f † ≤ [(idX × g); f ]† for g : Z → Y and f : X × Y → X (4.54)

The three axioms for † are called pre-fixpoint inequality, least pre-fixpoint implica-

tion or Park induction rule, and parameter inequality respectively.

In the observation below, we see that every ω-continuous category with bi-

nary products has parametric least fixpoints. In particular, the category CPO

of ω-CPOs and ω-continuous functions (see Example 85) has parametric least

fixpoints. As expected, because of ω-continuity least fixpoints can be defined in

terms of suprema of countable chains.

Observation 89 (Least Fixpoints As Suprema of Countable Chains). Let C be an

arbitrary ω-continuous category with products. We define the parametric least

fixpoint operation † as follows:

f † , supn≥0 υn υ0 , ⊥Y X υn+1 , 〈υn, idY 〉; f (4.55)

for an arrow f : X × Y → X . A straightforward inductive argument establishes

that the sequence υn is increasing. We show that the † operation satisfies the

pre-fixpoint inequality:

〈f †, idY 〉; f = 〈supn υn, idY 〉; f = (supn〈υn, idY 〉); f

= supn〈υn, idY 〉; f = supn υn+1 ≤ f †.

For the least pre-fixpoint implication, assume that 〈g, idY 〉; f ≤ g. We claim that

υn ≤ g for every n ≥ 0. The base case ⊥Y X ≤ g is trivial. For the induction step
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we have:

υn+1 = 〈υn, idY 〉; f [definition of υ]

≤ 〈g, idY 〉; f [induction hypothesis, monotonicity of ; and 〈·, ·〉]

≤ g. [assumption]

So, g is an upper bound of the sequence (υn)n and therefore f † = supn υn ≤ g.

Finally, for the parameter inequality we have the definition:

[(idX × g); f ]† = supn υ
′
n υ′0 = ⊥ZX υ′n+1 = 〈υ′n, idZ〉; (idX × g); f = 〈υ′n, g〉; f

We claim that g; υn = υ′n for every n ≥ 0. Indeed, g; υ0 = g;⊥Y X = ⊥ZX = υ′0 for

the base case, and for induction step we have:

g; υn+1 = g; 〈υn, idY 〉; f = 〈g; υn, g〉; f = 〈υ′n, g〉; f = υ′n+1.

So, we conclude that g; f † = g; (supn υn) = supn g; υn = supn υ
′
n = [(idX × g); f ]†.

The embedding theorem that follows (Theorem 90) is a variation of the pre-

vious Theorem 81 that is specifically about the subclass of ω-continuous cate-

gories. We use here the more elaborate construction of ideals (instead of lower-

sets) so that the induced nondeterministic category satisfies an additional prop-

erty for the preservation of determinism. This will turn out to be crucial for

the central result of this chapter, which is the (proof-theoretic) conservative ex-

tension of the theory of † in the standard CPO model. Theorem 90 also in-

troduces the definition of dagger in terms of star in nondeterministic models

(Equation 4.57).

Theorem 90 (Second Embedding Theorem). Let C be an ω-continuous category

with products (Definition 83), and consider the family clIXY of ideal-closure op-

erators for every homset C(X, Y ) described in Definition 86. The universal Horn

implication

D(φ) ∧D(ψ) ∧ ψ ≤ ψ;φ =⇒ D(ψ;φ∗) for φ : Y  Y and ψ : X  Y (4.56)
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is true in the nondeterministic category CclI (recall Def. 78). Moreover, the map

clI : f ∈ C(X, Y ) 7→ clIXY (f) ∈ CclI(X, Y )

preserves the operation of parametric least fixpoints, which is defined in CclI as

φ† , 〈〈⊥⊥Y X , ηY 〉〉; 〈〈φ,$2〉〉∗;$1 for φ ∈ CclI(X × Y,X). (4.57)

In fact, the mapping clI is an order-preserving injective homomorphism (em-

bedding) whose image is the deterministic subcategory of CclI .

Proof. First, let us observe that the category C and the family clI of closure op-

erations satisfy the conditions of Theorem 81. So, the category CclI (see Defi-

nition 78) is a nondeterministic category with products and joins. Moreover,

we already know that clI is order-preserving and commutes with all operations

except for dagger, which we have to consider here.

To establish the truth of Axiom (4.56) in CclI , we consider arbitrary mor-

phisms f ∈ C(Y, Y ) and g ∈ C(X, Y ), and we make the assumption that

clI(g) ⊆ clI(g); clI(f) = clI(g; f).

We want to show that the following element of the category CclI is deterministic:

clI(g); clI(f)∗ = clI(g);
∑

n≥0 cl
I(f)n [definition of ∗ in CclI]

=
∑

n≥0 cl
I(g); clI(f)n [Theorem 81, Axiom (4.35)]

=
∑

n≥0 cl
I(g; fn) [Theorem 81, clI homomorphism]

= clI(
⋃
n≥0cl

I(g; fn)) [definition of
∑

in CclI]

= clI({g; fn | n ≥ 0}) [Equation (4.45)]

From our hypothesis clI(g) = ↓g ⊆ ↓(g; f) = clI(g; f) we deduce that g ≤ g; f . It

follows that the sequence (g; fn)n≥0 is an ω-chain in C(X, Y ). So, we have that

clI(g); clI(f)∗ = clI({g; fn | n ≥ 0}) = ↓(supn≥0 g; fn) = clI(supn≥0 g; fn),
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which proves the desired conclusion that clI(g); clI(f)∗ is deterministic.

For the second part of the theorem, we only need to prove that the map

clI commutes with the parametric least fixpoints operation given the results of

Theorem 81. Consider an arbitrary element f : X × Y → X of C and recall the

definitions

f † = supn≥0 υn υ0 = ⊥Y X

clI(f)† = 〈〈⊥⊥Y X , ηY 〉〉; 〈〈clI(f), $2〉〉∗;$1 υn+1 = 〈υn, idY 〉; f

We want to show that clI(f †) = clI(f)†. For this, we first establish the claim that

〈〈⊥⊥Y X , ηY 〉〉; 〈〈clI(f), $2〉〉n = 〈〈clI(υn), ηY 〉〉

for every n ≥ 0. For the base case n = 0, we simply observe that:

〈〈⊥⊥Y X , ηY 〉〉; 〈〈clI(f), $2〉〉0 = 〈〈⊥⊥Y X , ηY 〉〉; ηX×Y = 〈〈⊥⊥Y X , ηY 〉〉

〈〈clI(υ0), ηY 〉〉 = 〈〈clI(⊥Y X), ηY 〉〉 = 〈〈⊥⊥Y X , ηY 〉〉

For the induction step, we make use of the induction hypothesis and several

axioms from Definition 79:

〈〈⊥⊥Y X , ηY 〉〉; 〈〈clI(f), $2〉〉n+1 = [definition of fn+1]

〈〈⊥⊥Y X , ηY 〉〉; 〈〈clI(f), $2〉〉n; 〈〈clI(f), $2〉〉 = [induction hypothesis]

〈〈clI(υn), ηY 〉〉; 〈〈clI(f), $2〉〉 = [Equation 4.40 in Claim 80]

〈〈〈〈clI(υn), ηY 〉〉; clI(f), ηY 〉〉 = [Theorem 81, clI homomorphism]

〈〈clI(〈υn, idY 〉; f), ηY 〉〉 = [definition of υn+1]

〈〈clI(υn+1), ηY 〉〉.

Finally, we use the claim we have just proved and properties of nondeterminis-
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tic categories:

clI(f)† = 〈〈⊥⊥Y X , ηY 〉〉; 〈〈clI(f), $2〉〉∗;$1 [definition of † in CclI]

= 〈〈⊥⊥Y X , ηY 〉〉;
(∑

n≥0〈〈clI(f), $2〉〉n
)
;$1 [definition of ∗ in CclI]

=
∑

n≥0〈〈⊥⊥Y X , ηY 〉〉; 〈〈clI(f), $2〉〉n;$1 [distributivity]

=
∑

n≥0〈〈clI(υn), ηY 〉〉;$1 [previous claim]

=
∑

n≥0 cl
I(υn) [projection]

= clI(
⋃
n≥0cl

I(υn)) [definition of
∑

in CclI]

= clI({υn | n ≥ 0}), [Equation (4.45)]

which is equal to ↓ supn≥0 υn = ↓f † = clI(f †). So, clI commutes with the dagger

operation.

Observation 91 (Parametric Least Fixpoints and Determinism). Let C be a non-

deterministic category with products and joins that satisfies additionally the

universal Horn implication

D(φ) ∧D(ψ) ∧ ψ ≤ ψ;φ =⇒ D(ψ;φ∗) for φ : Y  Y and ψ : X  Y .

An immediate consequence is that parametric least fixpoints preserve determinism,

that is,

D(φ) =⇒ D(φ†) for φ : X × Y  X

is derivable, where † is defined from ∗ as in Equation (4.57).

Proof. We assume that φ is deterministic. Since $1 is deterministic and ; pre-

serves determinism, it suffices to show that the arrow 〈〈⊥⊥Y X , ηY 〉〉; 〈〈φ,$2〉〉∗ is
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deterministic. By virtue of the extra axiom we have stipulated, we need to show:

〈〈⊥⊥Y X , ηY 〉〉; 〈〈φ,$2〉〉 = 〈〈〈〈⊥⊥Y X , ηY 〉〉;φ, 〈〈⊥⊥Y X , ηY 〉〉;$2〉〉

= 〈〈〈〈⊥⊥Y X , ηY 〉〉;φ, ηY 〉〉

≥ 〈〈⊥⊥Y X , ηY 〉〉.

The first equality above is justified by the fact that 〈〈⊥⊥Y X , ηY 〉〉 is deterministic.

The results of this section have brought us a lot closer to our final goal of

showing that we can reason about fixpoints using properties of nondetermin-

ism and star. We have shown that for all ω-continuous categories with products

there is an ideal-closure construction that enriches the categories with nondeter-

ministic structure. This construction is a conservative extension that allows us

to define parametric fixpoints using star.

4.4 Typed Kleene Algebra With Products

In this section we propose the central axiomatization of typed Kleene algebras

with products. It is a finitary system consisting of Horn implications that in-

volve the equality predicate as well as a deterministic subtype unary predicate

that distinguishes the deterministic elements. This axiomatization intends to

capture several key properties of nondeterministic categories (recall the infini-

tary axiomatization of Definition 79) in a weaker system. For this we include the

crucial axioms for ∗ of Kleene algebras [69, 70], as well several additional axioms

for the interaction between products and nondeterminism. Our main result here

is that these Kleene algebras with products possess sufficient structure to define
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product (X, Y ) 7→ X × Y
identity idX : X  X

bottom ⊥XY : X  Y

left projection πXY1 : X × Y  X

right projection πXY2 : X × Y  Y

composition f : X  Y g : Y  Z

f ; g : X  Z

pairing f : X  Y g : X  Z

〈f, g〉 : X  Y × Z

product
f : X  Y g : X ′  Y ′

f × g , 〈π1; f, π2; g〉 : X ×X ′  Y × Y ′

nondeterministic choice f : X  Y g : X  Y

f + g : X  Y

nondeterministic iteration f : X  X

f∗ : X  X

dagger
f : X × Y  X

f † , 〈⊥Y X , idY 〉; 〈f, π2〉∗; π1 : Y  X

Figure 4.3: Constants and operations for typed Kleene algebras with products.

a parametric least fixpoints operator † from ∗ that satisfies the desired properties

of Definition 88. We stress that the defined † operator extends to all elements of

the appropriate type, not just the deterministic ones.

Definition 92 (KA With Products). A typed Kleene algebraK with (binary) products

is a typed algebraic structure with the operations of Figure 4.3 and a unary de-

terminism predicate D on every homset such that K is a model of the following

universal Horn axioms:

D(idX) D(πXY1 ) D(πXY2 ) D(⊥XY ) (4.58)

D(f) ∧D(g) =⇒ D(f ; g) for f : X  Y and g : Y  Z (4.59)

D(f) ∧D(g) =⇒ D(〈f, g〉) for f : X  Y and g : X  Z (4.60)

(f ; g);h = f ; (g;h) for f : X  Y , g : Y  Z and h : Z  W (4.61)

idX ; f = f for f : X  Y (4.62)
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f ; idY = f for f : X  Y (4.63)

〈f, g〉; π1 = f for f : X  Y and g : X  Z (4.64)

〈f, g〉; π2 = g for f : X  Y and g : X  Z (4.65)

〈h; π1, h; π2〉 ≥ h for h : X  Y × Z (4.66)

D(h) =⇒ 〈h; π1, h; π2〉 = h for h : X  Y × Z (4.67)

D(f) =⇒ f ; 〈g1, g2〉 = 〈f ; g1, f ; g2〉

for f : X  Y and gi : Y  Zi

(4.68)

〈f1, f2〉; (g1 × g2) = 〈f1; g1, f2; g2〉 for fi : X  Yi and gi : Yi  Zi (4.69)

〈f, g〉; 〈π2, π1〉 = 〈g, f〉 for f : X  Y and g : X  Z (4.70)

〈f, π2〉; 〈g, π2〉 = 〈〈f, π2〉; g, π2〉 for f, g : X × Y  X (4.71)

⊥XY ≤ f for f : X  Y (4.72)

f ;⊥Y Z = ⊥XZ for f : X  Y (4.73)

〈⊥XY ,⊥XZ〉 = ⊥X,Y×Z (4.74)

(f + g) + h = f + (g + h) for f, g, h : X  Y (4.75)

f + g = g + f for f, g : X  Y (4.76)

f + f = f for f : X  Y (4.77)

(f1 + f2); g = f1; g + f2; g for fi : X  Y and g : Y  Z (4.78)

f ; (g1 + g2) = f ; g1 + f ; g2 for f : X  Y and gi : Y  Z (4.79)

〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉 for fi : X  Y and g : X  Z (4.80)

〈f, g1 + g2〉 = 〈f, g1〉+ 〈f, g2〉 for f : X  Y and gi : X  Z (4.81)

idX + f ; f∗ ≤ f∗ for f : X  X (4.82)

idX + f∗; f ≤ f∗ for f : X  X (4.83)

f ; g ≤ g =⇒ f∗; g ≤ g for f : X  X and g : X  Y (4.84)

g; f ≤ g =⇒ g; f∗ ≤ g for g : X  Y and f : Y  Y (4.85)
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〈f, π2〉∗ = 〈〈f, π2〉∗; π1, 〈f, π2〉∗; π2〉 for f : X × Y  X (4.86)

where the partial order ≤ is induced by + as follows: f ≤ g iff f + g = g. We

also consider a dagger operation that is defined from ∗ as follows:

f † , 〈⊥Y X , idY 〉; 〈f, π2〉∗; π1 for f : X × Y  X. (4.87)

We remark for Equation (4.86) that it is some kind of extension of the pairing-

uniqueness axiom to nondeterministic elements of a special form.

The theorem that follows says that our axiomatization of Kleene algebras

with products is strong enough to entail the desired properties of the defined

† operation. The standard four axioms for ∗ as well as Equation (4.86) for the

interaction between ∗ and products play a crucial role in the proof.

Theorem 93 (Parametric Least Fixpoints in KA). LetK be a typed KA with prod-

ucts. The defined dagger operation † of Equation (4.87) satisfies the axioms of

parametric least fixpoints (recall Definition 88):

〈f †, idY 〉; f ≤ f † for f : X × Y  X

〈g, idY 〉; f ≤ g =⇒ f † ≤ g for f : X × Y  X and g : Y  X

g; f † ≤ [(idX × g); f ]† for g : Z  Y and f : X × Y  X

Proof. Throughout the proof we write f to range over an arbitrary element of

type X × Y  X .

First, we will show the equation 〈f, π2〉∗; π2 = π2. Since idX×Y ≤ 〈f, π2〉∗

and ; is monotone, we obtain that π2 ≤ 〈f, π2〉∗; π2. It remains to see that

〈f, π2〉∗; π2 ≤ π2, which is implied by 〈f, π2〉; π2 ≤ π2. The last inequality is

true because π2 ≤ π2.
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Now, we are ready to prove the first property 〈f †, idY 〉; f ≤ f † for the dagger

operation. Using the claim of the two previous paragraph we see that:

f † = 〈⊥Y X , idY 〉; 〈f, π2〉∗; π1 [definition of †]

= 〈⊥Y X , idY 〉; (1 + 〈f, π2〉∗; 〈f, π2〉); π1 [unfold ∗]

= 〈⊥Y X , idY 〉; (π1 + 〈f, π2〉∗; f) [right distributivity]

= ⊥Y X + 〈⊥Y X , idY 〉; 〈f, π2〉∗; f [left distributivity]

= 〈⊥Y X , idY 〉; 〈f, π2〉∗; f [Axiom (4.72)]

〈f †, idY 〉 = 〈〈⊥Y X , idY 〉; 〈f, π2〉∗; π1, idY 〉 [definition of †]

= 〈〈⊥Y X , idY 〉; 〈f, π2〉∗; π1, 〈⊥Y X , idY 〉; π2〉 [projection]

= 〈⊥Y X , idY 〉; 〈〈f, π2〉∗; π1, π2〉 [Axiom (4.68)]

= 〈⊥Y X , idY 〉; 〈〈f, π2〉∗; π1, 〈f, π2〉∗; π2〉 [previous claim]

= 〈⊥Y X , idY 〉; 〈f, π2〉∗ [Axiom (4.86)]

and therefore 〈f †, idY 〉; f = 〈⊥Y X , idY 〉; 〈f, π2〉∗; f = f †. For the least pre-fixpoint

implication we suppose that 〈g, idY 〉; f ≤ g where g : Y  X . We claim that:

〈⊥Y X , idY 〉; 〈f, π2〉∗ ≤ 〈g, idY 〉 ⇐=

〈⊥Y X , idY 〉 ≤ 〈g, idY 〉 and 〈g, idY 〉; 〈f, π2〉 ≤ 〈g, idY 〉
⊥≤g⇐=

〈g, idY 〉; 〈f, π2〉 ≤ 〈〈g, idY 〉; f, 〈g, idY 〉; π2〉 = 〈〈g, idY 〉; f, idY 〉 ≤ 〈g, idY 〉,

which holds because of our assumption that 〈g, idY 〉; f ≤ g. Finally, we consider

an arbitrary element g : Z  Y . To show the inequality g; f † ≤ [(idX × g); f ]† is

suffices to establish

g; 〈⊥Y X , idY 〉; 〈f, π2〉∗ ≤ [Axiom (4.66)]

〈g;⊥Y X , g; idY 〉; 〈f, π2〉∗ = [Axiom (4.73)]

〈⊥ZX , g〉; 〈f, π2〉∗ ≤ [to show]

〈⊥ZX , idZ〉; 〈(idX × g); f, π2〉∗; (idX × g),
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which is implied by 〈⊥ZX , g〉 ≤ 〈⊥ZX , idZ〉; (idX × g) = 〈⊥ZX , g〉 and

〈⊥ZX , idZ〉; 〈(idX × g); f, π2〉∗; (idX × g); 〈f, π2〉 ≤ [Axiom (4.66)]

〈⊥ZX , idZ〉; 〈(idX × g); f, π2〉∗; 〈(idX × g); f, (idX × g); π2〉 = [projection]

〈⊥ZX , idZ〉; 〈(idX × g); f, π2〉∗; 〈(idX × g); f, π2; g〉 = [Axiom (4.69)]

〈⊥ZX , idZ〉; 〈(idX × g); f, π2〉∗; 〈(idX × g); f, π2〉; (idX × g) ≤ [x∗;x ≤ x∗]

〈⊥ZX , idZ〉; 〈(idX × g); f, π2〉∗; (idX × g).

We have thus established all three properties of parametric least fixpoints for

arbitrary nondeterministic elements of type X × Y  X using only the axioms

of typed KA with products.

4.5 The Theory of Parametric Fixpoints

We have already developed in the previous sections all the technical machinery

we need to establish proof-theoretic conservativity results for the equational the-

ory of † (denoted IT=), as well as for the theory of valid inequalities for † (denoted

IT≤). These results essentially say that can reason about parametric fixpoints us-

ing the language of regular expressions with products and an appropriate typed

variant of KA. So, the ∗ operation of Kleene algebra, which can be characterized

in terms of least fixpoints, should not be considered as being merely a special

case of fixpoints. Our results show that ∗ is versatile enough to allow the faithful

encoding of general parametric fixpoints.

First, consider the typed algebraic language of categories with binary prod-

ucts and parametric least fixpoints. We fix a set Ω of base types. We writeA,B, . . .

to range over these base types. The set Types(Ω) of all types over Ω is given by
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the following grammar:

X, Y ::= base type A ∈ Ω | X × Y.

We use lettersX, Y, Z, . . . to range over arbitrary types. A typed term is an expres-

sion of the form f : X → Y , where f is a term and X, Y are types in Types(Ω).

We also say that X → Y is the type of f . The constant symbols and constructors

for typed terms are the following:

idX : X → X πXY1 : X × Y → X πXY2 : X × Y → Y ⊥XY : X → Y

f : X → Y g : Y → Z

f ; g : X → Z

f : X → Y g : X → Z

〈f, g〉 : X → Y × Z
f : X × Y → X

f † : Y → X

As usual, we assume that we have a countable supply of variables of each type.

For the typed language of KA with products, we write f : X  Y for an

arbitrary typed term. The constants and constructors for typed KA terms are as

in the previous paragraph, except that the rule for † is replaced by the rules

f : X  Y g : X  Y

f + g : X  Y

f : X  X

f∗ : X  X

for nondeterministic choice + and nondeterministic iteration ∗.

Definition 94 (Translation). We define the translation [·] from the language of

categories with † to the language of KA with products. All variables and con-

stants remain the same. For example, [u : X → Y ] = u : X  Y for a variable,

and [π1 : X × Y → X] = π1 : X × Y  X for the left projection constant. The

dagger is translated as

[f †] = 〈⊥Y X , idY 〉; 〈[f ], π2〉∗; π1.

The translation function [·] commutes with the rest of the operation symbols.

For the rest of this section, we will use the term extended KA (with products) to

refer to the axiomatization that extends the one for Kleene algebras with prod-

126



ucts (Definition 92) with

D(f) ∧D(g) ∧ g ≤ g; f =⇒ D(g; f∗) for f : Y  Y and g : X  Y . (4.88)

The above implication is an additional property about the preservation of de-

terminism. We will write KA× to denote the equations that are provable in ex-

tended KA. Moreover, we write IT= for the equations f = g that are valid in

CPO, and IT≤ for the valid inequalities f ≤ g.

Theorem 95 (KA× Conservatively Extends IT≤). For an inequality f ≤ g in the

language of categories with †, we have that CPO |= f ≤ g iff [f ] ≤ [g] is a

theorem of KA×.

Proof. First, we observe that for every term f in the language of IT≤, we can

show in extended KA that D([f ]), which says that [f ] is deterministic. This

is because all the constants id, π1, π2, and ⊥ are deterministic, the operations

; and 〈·, ·〉 preserve determinism, and the additional axiom implies that † also

preserves determinism (see Observation 91).

For the completeness part of the theorem, we assume that CPO |= f ≤

g and we show that [f ] ≤ [g] is in KA×. By previous results of Ésik in [34],

we know that the axiomatization of categories with parametric least fixpoints

(Definition 88) is complete for the theory of CPO. Since the translations of typed

terms are all provably deterministic, it suffices to observe that all (translations

of) the axioms of Definition 70 and 88 are provable in extended KA. Most of the

work for this has been already done in Theorem 93.

For the soundness part, suppose that [f ] ≤ [g] is provable in extended KA.

Since CPO is an ω-continuous category (Definition 83), the category CPOclI

that arises from the ideal-closure construction satisfies all axioms of extended
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KA by virtue of Theorem 90. It follows that CPOclI |= [f ] ≤ [g]. But both

[f ] and [g] denote deterministic elements of CPOclI , and we also know from

Theorem 90 that the deterministic part of CPOclI is isomorphic to CPO. We

thus conclude that CPO |= f ≤ g.

Corollary 96 (KA× Conservatively Extends IT=). For an equation f = g in the

language of categories with †, we have that CPO |= f = g iff [f ] = [g] is a

theorem of KA×.

Proof. This is an immediate consequence of Theorem 95.

We have presented above two syntactic conservativity results, which were ob-

tained by considering the categories satisfying the so called “Park axiomatiza-

tion” of Definition 88. Even though our model-theoretic constructions do not

apply to all models of IT= (the categories that are called iteration theories by

Bloom and Ésik) or IT≤ (the ordered iteration theories), we have shown that our

typed variant of KA captures faithfully the basic syntactic theories of parametric

fixpoints.

4.6 Related Work

There is a long line of work, primarily by Bloom and Ésik, under the name

of “iteration theories” or the “(in)equational theory of iteration” (see e.g.

[17, 19, 20, 34, 120] and references therein), which is intimately related to the

work on Kleene algebra [31, 68, 69, 70, 72, 62, 81, 74] in general and the present

work in particular. The axioms of iteration theories capture the equational prop-

erties of fixpoints in several classes of structures relevant to computer science.
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For example, they capture the equational theory of ω-continuous functions be-

tween ω-CPOs, where the algebraic signature includes symbols for composition,

pairing, and parametric fixpoints. Several different infinite equational axioma-

tizations have been considered in the literature, all of which require substan-

tial effort to parse and understand. By allowing quasi-equations, much sim-

pler (finite) axiomatizations can be found. Many examples of iteration theo-

ries involve functions on posets, so it is a natural question to look for complete

axiomatizations of the valid inequalities over classes of structures that are of

interest, e.g., structures of ω-continuous functions over ω-CPOs. One such uni-

versal Horn axiomatization is given in [34]. This axiomatization includes two

inequalities and one implication for the † operation, which are both intuitive

and easy to memorize. We note that in the work on iteration theories, the issue

of how (non)determinism interacts with (non-strict) pairs, which is central in

the present work, is handled in a way that excludes many natural models.

Of particular relevance to the relationship between iteration theories and

Kleene algebra are the works on the so-called matrix iteration theories [18, 17, 20].

They are cartesian categories in which the homsets are commutative monoids

with respect to an operation +, which distributes over composition. This also

induces cocartesian structure and allows an easy translation between the dag-

ger (parametric fixpoint) operation and Kleene star. However, this translation is

not sound for the classes of structures we consider. In particular, the + symbol

cannot be generally understood as nondeterministic choice when 〈·, ·〉 is inter-

preted as pairing: the axioms imply the property 〈a,⊥〉 + 〈⊥, b〉 = 〈a, b〉, which

is not meaningful for nondeterministic computation with pairs. A program that

nondeterministically returns either a pair 〈a,⊥〉 (right component diverging) or

a pair 〈⊥, b〉 (left component diverging) is not equal to the program that returns
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the pair 〈a, b〉 (both components non-diverging). The translation of the dagger

operation in the language of KA that we give here is crucially different, and

is in fact sound for the class of matrix iteration theories as well. The star-to-

dagger translation of [18] can be recovered as a simple degenerate case in our

framework where all arrows are deterministic.

The work of Plotkin and Power on algebraic operations (see e.g. [105] for an

overview) provides a uniform semantics of computational effects by consider-

ing primitive operations of type fX : (PX)n → PX , where P is a monad, that

are the source of effects. Their framework can be instantiated with a monad for

nondeterminism, but their investigations are very general and they do not offer

any technical machinery that can be of help here.

There is a somewhat tenuous connection with the work by Goncharov [43],

who also studies some kind of interaction between nondeterminism and pairs in

an algebraic/categorical setting. He defines additive (strong) monads and Kleene

monads axiomatically. Calculi for an extended metalanguage of effects are de-

fined and completeness/incompleteness results are obtained. Our notions of

nondeterministic categories and typed KAs with products are different from that of

a Kleene monad in that we consider non-strict programs that form lazy pairs.

The absence of the strictness axiom ⊥; f = ⊥ from our axiomatization and the

use of lazy pairs are essential for our encoding of fixpoints. In particular, the

axioms stipulated in [43] would force all the parametric fixpoints to be equal to

⊥, because in that system

〈⊥, id〉; 〈f, π2〉∗; π1 = ⊥; 〈f, π2〉∗; π1 = ⊥.

So, the models we are investigating in the present work are crucially different

from the models considered in [43], in which parametric fixpoints trivialize.
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The work on Hoare powerdomains [1, 104], which give models of angelic

nondeterministic computations, is related. The (lower) Hoare powerdomain of

a domain is formed by taking all the ideals of the domain, where by ideal we

mean here the nonempty Scott-closed (down-closed and closed under suprema

of directed subsets) subsets of the domain. In the present work, we identify

models of the axiomatically defined nondeterministic categories which are some-

what similar to (and much simpler than) the construction of Hoare powerdo-

mains over ω-CPOs. We first identify a simple model that arises from lowerset-

closure operators on the category of posets with bottom elements. Then, we also

prove that the ideal-closure operators on the category of ω-CPOs give rise to a

model.

Our work here builds directly upon the existing work on Kleene algebra

[31, 68, 69, 70, 72]. The crucial axioms for the iteration operation ∗ are taken

from [69, 70]. The system of KA we present is a typed Kleene algebra in the

sense of [74] extended with products that satisfy weaker axioms than those of

categorical products.

4.7 Conclusion

In this chapter we have reconciled the notions of iteration captured by the star

operation ∗ of KA and the dagger operation † of IT. We have presented and

investigated a system of typed KA with products, in which the notion of a de-

terministic program turns out to be of importance. We work in the framework

of categories with products combined with extra structure to treat (angelic) non-

determinism. We have identified two concrete models that arise from lowerset-
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closure operators on pointed posets and ideal-closure operators on ω-CPOs. The

main technical result of our paper is a translation of † in terms of ∗ that gives

an embedding of the (in)equational theory of † in a typed variant of KA with

products. Informally, this says that we can reason about the basic equational

properties of fixpoints using the language of regular expressions and the ax-

ioms of Kleene algebra.

This work has been a first step in presenting a higher-order system of typed

Kleene algebra. We would like to investigate what properties of recursion can

be captured in such a higher-order system and how this would relate to the

investigations of [19].
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CHAPTER 5

CONCLUSION

The general theme of this dissertation has been the study of variations and

extensions of KA and KAT that are useful for the verification of computer pro-

grams. KA and KAT enable equational reasoning for programs, which sub-

sumes other approaches in program verification based on Hoare logic. One of

the features that makes these systems so versatile and useful for verification is

that they can accommodate in a straightforward way extra assumptions, thus

capturing crucial properties of the domain of computation.

We believe that the previous successes of KA and KAT and the results pre-

sented here provide sufficient evidence to support the claim that formal systems

based on KAT can play an increasingly important rôle in the field of program

verification. A notable example towards this direction has been NetKAT [6],

a KAT-based system that enables equational reasoning for software-define net-

works (SDNs). There are many open questions and opportunities for future

research regarding how to accommodate parallelism and concurrency in KA

[54], how to reason about probabilistic programs equationally [63, 64, 66, 67],

and how to cover many more features of computation.

The connection between language models of (variants of) KA that charac-

terize the equational theory and automata-theoretic models has been explored

in a generalized setting using the framework of coalgebra [116, 117, 119]. Such

operational characterizations in terms of machine models give rise to decision

procedures based on the notion of bisimulation. We believe that these tech-

niques will continue to inspire practical decision procedures for variations of

KA.
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[54] Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concur-
rent Kleene algebra and its foundations. The Journal of Logic and Algebraic
Programming, 80(6):266–296, 2011.

[55] Yu I. Ianov. The logical schemes of algorithms. Problems of Cybernetics,
1:82–140, 1960.

[56] Kazuo Iwano and Kenneth Steiglitz. A semiring on convex polygons and
zero-sum cycle problems. SIAM Journal on Computing, 19(5):883–901, 1990.

138



[57] Donald M. Kaplan. Regular expressions and the equivalence of programs.
Journal of Computer and System Sciences, 3(4):361–386, 1969.

[58] Stephen Cole Kleene. Representation of events in nerve nets and finite
automata. Technical Report RM-704, RAND Corporation, 1951.

[59] Stephen Cole Kleene. Representation of events in nerve nets and finite
automata. In Claude E. Shannon and John McCarthy, editors, Automata
Studies, number 34 in Annals of Mathematics Studies, pages 3–41. Prince-
ton University Press, 1956.

[60] S. Rao Kosaraju. Analysis of structured programs. In Proceedings of the
Fifth Annual ACM Symposium on Theory of Computing (STOC ’73), pages
240–252, 1973.

[61] S. Rao Kosaraju. Analysis of structured programs. Journal of Computer and
System Sciences, 9(3):232–255, 1974.

[62] Łucja Kot and Dexter Kozen. Kleene algebra and bytecode verification.
ENTCS, 141(1):221–236, 2005.

[63] Dexter Kozen. Semantics of probabilistic programs. In Proceedings of
the 20th Annual Symposium on Foundations of Computer Science (FOCS ’79),
pages 101–114. IEEE, 1979.

[64] Dexter Kozen. Semantics of probabilistic programs. Journal of Computer
and System Sciences, 22(3):328–350, 1981.

[65] Dexter Kozen. On induction vs. *-continuity. In Dexter Kozen, editor,
Proceedings of Workshop on Logics of Programs (1981), volume 131 of Lecture
Notes in Computer Science, pages 167–176. Springer, 1982.

[66] Dexter Kozen. A probabilistic PDL. In Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing (STOC ’83), pages 291–297, 1983.

[67] Dexter Kozen. A probabilistic PDL. Journal of Computer and System Sci-
ences, 30(2):162–178, 1985.

[68] Dexter Kozen. On Kleene algebras and closed semirings. In Proceedings of
the 15th Symposium on Mathematical Foundations of Computer Science (MFCS
’90), pages 26–47, 1990.

139



[69] Dexter Kozen. A completeness theorem for Kleene algebras and the al-
gebra of regular events. In Proceedings of Sixth Annual IEEE Symposium on
Logic in Computer Science (LICS ’91), pages 214–225, 1991.

[70] Dexter Kozen. A completeness theorem for Kleene algebras and the alge-
bra of regular events. Information and Computation, 110(2):366–390, 1994.

[71] Dexter Kozen. Kleene algebra with tests and commutativity conditions. In
Proceedings of the 2nd International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’96), volume 1055 of Lecture
Notes in Computer Science, pages 14–33. Springer, 1996.

[72] Dexter Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems (TOPLAS), 19(3):427–443, 1997.

[73] Dexter Kozen. On the complexity of reasoning in Kleene algebra. In Pro-
ceedings of the 12th Annual IEEE Symposium on Logic in Computer Science
(LICS ’97), pages 195–202, 1997.

[74] Dexter Kozen. Typed Kleene algebra. Technical report, Cornell University,
1998.

[75] Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans-
actions on Computational Logic, 1(1):60–76, 2000.

[76] Dexter Kozen. Halting and equivalence of schemes over recursive theo-
ries. Technical Report TR2002-1881, Computer Science Department, Cor-
nell University, October 2002.

[77] Dexter Kozen. On the complexity of reasoning in Kleene algebra. Infor-
mation and Computation, 179:152–162, 2002.

[78] Dexter Kozen. Some results in dynamic model theory. Science of Computer
Programming, 51(1-2):3–22, 2004.

[79] Dexter Kozen and Konstantinos Mamouras. Kleene algebra with products
and iteration theories. In Proceedings of the 22nd EACSL Annual Conference
on Computer Science Logic (CSL ’13), pages 415–431, 2013.

[80] Dexter Kozen and Konstantinos Mamouras. Kleene algebra with equa-
tions. In Proceedings of the 41st International Colloquium on Automata, Lan-

140



guages and Programming (ICALP ’14), Part II, volume 8573 of Lecture Notes
in Computer Science, pages 280–292. Springer, 2014.

[81] Dexter Kozen and Maria-Cristina Patron. Certification of compiler opti-
mizations using Kleene algebra with tests. In Proceedings of the First Inter-
national Conference on Computational Logic (CL ’00), pages 568–582, 2000.

[82] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Complete-
ness and decidability. In Proceedings of the 10th International Workshop on
Computer Science Logic (CSL’96), pages 244–259. Springer-Verlag, 1996.

[83] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages 789–840.
North Holland, 1990.

[84] Dexter Kozen and Jerzy Tiuryn. On the completeness of propositional
Hoare logic. Information Sciences, 139(3-4):187–195, 2001.

[85] Dexter Kozen and Wei-Lung (Dustin) Tseng. The Böhm-Jacopini theorem
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